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An eigenvalue-based similarity measure 

and its application in defect detection 

ABSTRACT 

In this paper, we propose an eigenvalue-based similarity measure between two 

gray-level images and, in particular, aim at the application in defect detection.  The 

pair-wise gray levels at coincident pixel locations in two compared images are used as 

the coordinates to plot the correspondence map.  If two compared images are 

identical, the plot in the correspondence map is a diagonal straight line.  Otherwise, 

it results in a non-linear shape in the correspondence map.  The smaller eigenvalue 

of the covariance matrix of the data points in the correspondence map is used as the 

similarity measure.  It will be approximately zero for two resembled images, and 

distinctly large for dissimilar images.  Experimental results from a number of 

assembled PCBs (printed circuit boards) have shown the effectiveness of the proposed 

similarity measure for detecting local defects in complicated images. 

Keywords: Similarity measure; Defect detection; Eigenvalues; Template matching 
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1. INTRODUCTION 

Normalized cross correlation has long been a common and powerful similarity 

measure in computer vision, which has been extensively used for applications such as 

object recognition [1, 2], OCR [3, 4] and defect inspection [5-8].  

The traditional normalized cross correlation between a scene image f  and a 

reference template w  is given by [9]: 
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where nm ×  is the size of the neighborhood window; f  and w  are the mean gray 

values of the windowed subimages in f  and w , respectively.  The normalized 

correlation γ  is scaled in the range –1 to 1, and a prefect match between f  and w

will have a maximum value of unity.  In object recognition applications, one finds a 

desired pattern in the scene image by sliding the window of a reference template in a 

pixel-by-pixel basis, and computing the correlation between the two windowed 

subimages.  The peak of the correlation value indicates an instance of the template in 

the scene image. 

 In defect inspection applications, the normalized cross correlation between two 

windowed subimages at coincident locations in their respective scene image and 

faultless reference image is calculated, and the process is repeated for all pixels in the 
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whole image.  A pixel with small γ  value below some predetermined threshold is 

classified as a defective point.  When the normalized cross correlation is applied as a 

similarity (or dissimilarity) measure for defect detection, it may not be sufficiently 

responsive to the detection of subtle anomalies, and may result in false acceptance.  

Figure 1(a) shows the reference image of a partial printed circuit board (PCB), and 

Figure 1(b) is a faultless image of the PCB.  The dotted squares of size 3030×

pixels in Figures 1(a)-(c) mark the test subimages for comparison.  The resulting γ

value between Figures 1(a) and 1(b) is 0.99, which indicates that the two compared 

images are nearly identical.  Figure 1(c) is a defective version of the PCB, where the 

printed digit “2” is blurred.  The correlation value of the two compared subimages in 

Figures 1(a) and 1(c) is as high as 0.86, and the image under inspection might be 

falsely accepted as a faultless one. 

Image difference operations that subtract the scene image from the template 

image are simple and efficient for defect detection applications in industry.  Wu et al. 

[10] directly subtracted the inspection image from the template image in binary mode 

for PCB defect detection. They then applied an elimination process to distinguish true 

defects from noise in the residual image.  Ibrahim et al. [11] and Ibrahim and 

Al-Attas [12] also applied the image difference operation for PCB inspection.  

Instead of doing the subtraction in the binary images, the difference operation is 

carried out in the wavelet-domain image in order to minimize computation time.  

Yazdi and King [13] developed an automatic vision system for inspection of lace 

fabric in binary mode.  They first used a correlation measure to align the inspection 

image so that it has the same size and orientation as the template image.  Direct 

subtraction is then applied to the aligned image and the template image.  
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Morphological filtering is finally used to remove residues in the difference image.  

The existing image difference algorithms are very efficient and effective for detecting 

defects in binary images.  They are prone to failure for complicated gray-level 

images due to illumination changes. 

Our work has been motivated by a need to develop an effective similarity 

measure that can be significantly responsive to local deviations between two 

compared images.  In this study, we propose an eigenvalue-based similarity measure 

between two gray-level images and, in particular, focus on the application in defect 

inspection. The proposed similarity measure is based on the shape of the pair-wise 

gray-level distribution of two compared images.  Given a reference image ),( yxw

and a scene image ),( yxf , we may plot the gray-level distribution of the two images 

in a 2D map with coordinates [ ]),(),,( yxfyxw  for each image pixel ),( yx . The 

resulting 2D gray-level distribution is named gray-level correspondence map, in 

which the gray-level distribution will be a diagonal line if images f  and w  are 

perfectly identical, and the distribution will be a nonlinear shape if the two compared 

images are different.  The shape of gray-level distribution is then measured by the 

eigenvalues of the covariance matrix of the data points in the 2D gray-level 

correspondence map.  The smaller eigenvalue of the covariance matrix is used as the 

similarity measure of two compared images.  It will be approximately zero if the two 

compared images are identical, whereas it will be distinctly large if the two compared 

images are different to some extent.  The discrimination capabilities of the proposed 

similarity measure, the traditional normalized cross correlation, and the image 

difference operation are also evaluated in the study. 
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 This paper is organized as follows: Section 2 first describes the representation of 

the 2D gray-level correspondence map, and discusses the shapes of gray-level 

distributions of various image contents in the correspondence maps.  Then the 

eigenvalue of the covariance matrix used for describing the shape of gray-level 

distribution in the correspondence map is presented.  Section 3 discusses the 

experimental results from a number of assembled PCBs.  Effects of changes in 

window size and illumination are also analyzed. The paper is concluded in Section 4. 

2. PAIR-WISE GRAY-LEVEL CORRESPONDENCE MAP 

 Let ),( yxf  and ),( yxw  be the gray levels of the respective scene image and 

reference image at pixel coordinates ),( yx , and ),( yxf , { }Lyxw ,...,2,1,0),( ∈ . The 

pair-wise gray values at coincident pixel locations in the two compared images are 

used as the coordinates to plot the correspondence map, where the x-axis is the gray 

level for the reference image w , and the y-axis is the gray level for the scene image 

f .  The scales of each axis in the correspondence map are L,...,2,1,0 . For each 

pixel coordinates ),( yx  in the image, a correspondence point with coordinates 

[ ]),(),,( yxfyxw  is generated in the 2D gray-level correspondence map.  Since 

different pixel coordinates in the image may result in the same correspondence point 

in the 2D map, the transformation is a many-to-one correspondence.  Let nm ×  be 

the neighborhood window size, and [ ]jiC ,  the accumulated number of pixels that 

has gray value i in the reference image w , and the corresponding gray value j in the 

scene image f .  That is  
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For x = 0, 1, 2, …, m-1 

  For y = 0, 1, 2, …, n-1 

        [ ] [ ] 1),(),,(),(),,( += yxfyxwCyxfyxwC

Next y

Next x

 If f  and w  are two identical gray-level images, then the correspondence map 

[ ]jiC ,  will be a diagonal straight line. Depending on the degree of difference 

between f  and w , the gray-level distribution in the correspondence map will 

deviate from the diagonal line, and form a shape of non-linear structure. 

 In order to visualize the gray-level distribution in the correspondence map, 

[ ]jiC ,  is represented as an intensity function, where darkness is proportional to the 

magnitude of [ ]jiC , .  Figures 2(a) and 2(b1) show a reference image (a partial IC 

mark), and a test image under the same lighting conditions.  Figures 2(b2) and 2(b3) 

are the overexposed and underexposed versions of the test sample.  Figures 2(c1)-(c3) 

are the resulting gray-level correspondence maps for the test images in Figures 

2(b1)-(b3), respectively.  It can be seen from Figure 2 that the plot in the 

correspondence map is approximately a straight line and varies according to the 

lighting condition.  A fine o45  straight line is generated for the two identical 

images (Figures 2(a) vs. 2(b1)).  A bold straight line (due to non-uniform 

illumination) with slop angle larger than o45  is obtained for the overexposed image 

in Figure 2(b2).  In contrast, a line with slop angle less than o45  is obtained for the 

underexposed image in Figure 2(b3).  Therefore, if two compared images have the 

same contents, a straight line will be generated in the 2D gray-level correspondence 
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map, and the slop angle of the line represents the variation of illumination between 

the scene and reference images. 

 Figure 3(a) shows the reference image of a partial IC mark, and Figure 3(b) is a 

defective version of the IC mark under the same lighting conditions.  Figure 3(c) is 

the gray-level correspondence map of Figure 3(a) vs. 3(b).  It can be seen from 

Figure 3(c) that a diagonal straight line is generated in the correspondence map, which 

represents the identical regions of the two compared images.  The points deviated 

from the diagonal line in the correspondence map correspond to the defective region 

in the scene image.  Figure 3(e) shows the resulting 2D gray-level correspondence 

map from Figures 3(a) and (d). These two compared images have completely different 

contents. No diagonal straight line can be observed in the correspondence map of 

these two heterogeneous images.   

Figure 4 presents the result of two approximately uniform images.  A small spot 

along the diagonal direction is obtained in the resulting gray-level correspondence 

map.  Figure 5 shows the result of two resembled test images that contain only a few 

high-contrast gray levels.  The resulting correspondence map shows a few spots 

distributed along the diagonal direction, which correspond to the discrete 

high-contrast gray values in the original images. 

3. THE SIMILARITY MEASURE 

 In this paper, the measure of the shape (and thus, the similarity between two 
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compared images) in the correspondence map is derived from the statistical and 

geometric properties associated with the eigenvalues of the covariance matrix of the 

data points in the correspondence map. 

The covariance matrix M  of a reference image ),( yxw  and a scene subimage 

),( yxf , both of size nm × , in the gray-level correspondence map is given by 

=
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 Note that the covariance matrix M  can be directly calculated from gray-level 

images ),( yxf  and ),( yxw . The 2D gray-level correspondence map is only 
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conceptually constructed.  The covariance matrix is 22 × , symmetric and positive 

semidefinite.  There are two eigenvalues Lλ  and 
S

λ  for the matrix M , which are 

[14]   

[ ]2

12

2

22112211 4)(
2

1
mmmmmL +−++=λ                          (3) 

[ ]2

12

2

22112211 4)(
2

1
mmmmmS +−−+=λ                          (4) 

LS λλ ≤

 The eigenvalues of the matrix M  can be used to extract the shape information 

about the gray-level distribution in the correspondence map.  The larger eigenvalue 

Lλ  represents the variance of data along the major-axis of the shape, and the smaller 

eigenvalue 
S

λ  represents the variance of data along the minor-axis of the shape in 

the 2D correspondence map.  If the shape is a straight line, i.e., two compared 

images are identical, in the gray-level correspondence map, the smaller eigenvalue 

Sλ  will have an ideal value of zero since the variance along the minor-axis of a line 

is zero.  The eigenvalue Sλ  will be distinctly large if the shape formed in the 

gray-level correspondence map is not a straight line.  Therefore, the smaller 

eigenvalue Sλ  of the covariance matrix M  is adopted as a similarity measure 

between two compared images. 

 Note that the traditional normalized cross correlation, as formulated in eq. (1), 

can also be expressed with 11m , 22m  and 12m , i.e., 

2211

12

mm

m

⋅
=γ                                               (5) 
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 As aforementioned, the correlation value between the two compared subimages 

of size 3030×  pixels in Figures 1(a) and 1(c) is as high as 0.86.  The respective 

Sλ  values from the faultless image (Figure 1(b)) and the defect image (Figure 1(c)) 

are 0.15 and 528.94.  They are distinctly different in magnitude. The results reveal 

that the similarity measure Sλ  is superior to the normalized cross correlation γ  for 

detecting small anomalies in a complicated gray-level image. 

 The comparison between the resulting correlation value γ  and eigenvalue Sλ

from the test images in Figures 2-5 is summarized in Table 1. Note that the resulting 

measures in Table 1 are derived from the subimages of size 100100×  pixels in 

Figures 2-5. It is apparent from the table that the eigenvalue Sλ  is an effective 

measure to discriminate the difference between two compared images.  The resulting 

Sλ  values are quite small for resembled images, but distinctly large for dissimilar 

images.   

When a uniform image is compared with any arbitrary reference image, the 

resulting eigenvalue Sλ  is also approximately zero.  Since the linear distribution of 

two such images will be vertical or horizontal in the correspondence map, the 

orientation of the line is far away from the o45 -diagonal direction.  The line 

orientation in the correspondence map can be easily determined from the eigenvector 

associated with the major axis.  The eignevalue Sλ  along with the line orientation 

can sufficiently identify anomalies in two compared images.  Since both the 

similarity measure 
S

λ  an the normalized cross correlation γ  can be computed from 

11m ,
22m  and 

12m  in eq. (2), we may alternately use Sλ  as the supplement of γ

for defect detection, i.e., a defect is reported whenever the corresponding γ  value is 
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sufficiently small or the Sλ  value is sufficiently large.   

The inherited limitation to both the proposed similarity measure Sλ  and the 

normalized cross-correlation γ  is their sensitivity to image translation. To overcome 

the effect of shifting, one may have to search for the local minimum value of Sλ  in a 

small search region, i.e., 

)},({min),(
),(

jyixyx
S

ji
S

++= λλ

where ),( jyixS ++λ  is the eigenvalue 
Sλ  at coordinates ),( jyix ++ , and ),( ji

defines the search region of a tolerable image translation.  Note that the search needs 

only to be carried out for those candidates of defective pixels that have significantly 

large 
Sλ  values. 

4. EXPERIMENTAL RESULTS 

 In this section, we present the experimental results for evaluating the efficacy of 

the proposed similarity measure.  The images are 400400 ×  pixels wide with 8-bit 

gray levels.  In the experiments, we especially focus on the use of similarity 

measures for defect inspection applications.  In order to visualize the detection 

results of two compared images, the resulting values of 
Sλ  (or γ−1 ) are 

represented as an intensity function, where darkness is proportional to the magnitude 

of 
Sλ  (or γ−1 ).  A large value of 

Sλ  (or γ−1 ) will result in a dark intensity 

region in the resulting image.  The darker the intensity in the resulting image, the 

stronger the evidence of a defect.  The effects of changes in window size and 
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illumination are first discussed. 

 Test samples in Figure 6 are used to evaluate the effect of varying window sizes 

on the detection results of the similarity measure
Sλ .  Figure 6(a) shows the image of 

a faultless assembled PCB used as a reference.  Figures 6(b) and (c) are respectively 

a defect-free version and a defect image of the PCB.  In the experiment, the window 

size is varied from 55× , 2020×  to 3535× .  Figures 6(d)-(f) show the detection 

results of the defect-free PCB (Figure 6(b)) from window sizes 55× , 2020 ×  and 

3535×  pixels, respectively.  The detection results of the defective PCB (Figure 6(c)) 

are presented in Figures 6(g)-(i).  The detection results show that the small window 

size of 55×  contains little structure of the image content and, therefore, generates 

much noise in the defect-free image.  The detected defect area in the defective PCB 

image with the small window size is less visible and distributes in a scattering manner.  

A large window size of 3535×  may not generate better detection, and increases the 

computation burden.  In terms of detection effectiveness and computational 

efficiency, the suggested window width for defect detection is in the range between 20 

and 30 pixels. 

In order to evaluate the effect of changes in illumination, Figure 7(a) shows a 

reference PCB image at illumination 340 Lux, and Figures 7(b)-(f) are  defective 

versions of the PCB at 340, 440, 500, 240 and 200 Luxes, respectively.  The 

neighborhood window used for the test is 2020 ×  pixels.  The resulting similarity 

measures of γ−1  and 
S

λ  as an intensity function are presented in Figures 

8(a1)-(a5) and 8(b1)-(b5).  They show that the defective region is well detected 

using the similarity measure 
Sλ  for the test sample under varying illumination levels.  
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The normalized cross correlation can also detect faults, but with more noisy points in 

the resulting images.  The results also reveal that both 
S

λ  and γ  measures are less 

sensitive to overexposed images, whereas their performance is degraded for severely 

underexposed images.  This is because that an overexposed image preserves a better 

linearity of illumination changes in the correspondence map, compared to that of a 

highly underexposed image. 

To further compare the performance between the proposed similarity measure 

Sλ  and the commonly used image difference operation, Figures 8(c1)-(c5) show 

respectively the subtraction results of the inspection images at illumination levels 500, 

400, 340, 240 and 200 Lux from the reference image at illumination 340 Lux, in 

which darkness is linearly proportional to the magnitude of the subtracted values.  It 

can be observed from Figure 8(c3) that the defective region can be well detected if the 

inspection image and the reference image are at the same illumination level.  Many 

light residual pixels appear as noise in the difference image of Figure 8(c3).  As the 

inspection images with illumination levels apart from 340 Lux, the residual pixels 

become darker and increase in number.  They may cause serious false alarms.  

Conversely, the proposed similarity measure 
S

λ  makes the normal region 

consistently white in the resulting image, regardless of the changes in illumination 

level from 240 to 500 Lux.  

In order to further demonstrate the effectiveness of the proposed similarity 

measure
S

λ , defect detection of SMT (surface-mounted technology) components on 

PCBs is examined in the experiment.  Figure 9(b) shows a displaced (rotated by a 

small angle) SMT component.  Figure 10(b) shows an SMT component with wrong 
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polarity (the component is mounted in a o180  reverse on the PCB and, therefore, the 

printed characters on the component are reversed).  The neighborhood window used 

for these test samples is 3030×  pixels.  The detection results of the two SMT 

samples from the similarity measures of γ−1  and 
Sλ  are presented in Figures 

9(c)-(d) and Figures 10(c)-(d), respectively.  As seen in Figures 9 and 10, the 

proposed similarity measure 
Sλ  can reliably detect the defective regions, even 

though the SMT components show only minor variations from their faultless 

references.  Since the proposed similarity measure 
Sλ  can be well responsive to 

local deviations, it is especially suited for the detection of mis-registered SMT 

components on PCBs. 

4. CONCLUSIONS 

 In defect detection applications, the traditional normalized cross correlation is a 

good indicator to detect major difference between two compared images.  However, 

its performance degrades when the two compared images contain only minor 

difference.  In this paper, we have proposed an eigenvalue-based similarity measure 

between the reference image and the scene image.  The core concept of the proposed 

method is to transform the gray levels of two compared images at each coincident 

pixel location to form a gray-level pair.  Gray-level pairs give the point coordinates 

to form the 2D gray-level correspondence map.  The shape of gray-level pairs 

distributed in the correspondence map represents the similarity between two 

compared images.  Two identical images result in a fine diagonal straight line, and 

any two dissimilar images generate non-linear shape of gray-level distribution in the 
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correspondence map.  The smaller eigenvalue 
Sλ  of the covariance matrix of 

gray-level pairs is used as the similarity measure.  The ideal 
S

λ  value will be zero 

for two identical images, and will be distinctly large for two dissimilar images. 

 Experimental results have shown that the discrimination capability of the 

proposed similarity measure is superior to the traditional normalized cross correlation.  

It is also highly responsive to subtle defects and greatly tolerable to illumination 

changes, compared to the image difference operation.  The proposed method is 

especially well suited for the application in defect detection.  Defects embedded in 

complicated material surfaces such as printed-circuit boards, surface-mounted devices 

and IC wafers can be effectively detected using the proposed similarity measure
Sλ .   
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(a) (b) (c) 

Figure 1. Images of a partial printed circuit board: 

(a) reference image; (b) faultless test image; 

(c) defective test image. The dotted squares of size  

3030×  pixels mark the subimages for comparison. 
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(a) (b1) (c1) 

 (b2) (c2) 

 (b3) (c3) 

Figure 2. The correspondence maps for two images with the same contents in varying 

illumination: (a) the reference image of printed characters on an IC; (b1) a 

faultless test image under the same lighting condition as (a); (b2) an 

overexposed image; (b3) an underexposed image; (c1)-(c3) the resulting 

gray-level correspondence maps from (a) vs. (b1), (a) vs. (b2) and (a) vs. 

(b3), respectively.  
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(a) (b) (c) 

 (d) (e) 

Figure 3. (a) Reference image of IC mark; (b) a defective version of (a); (c) 

correspondence map of the two images ((a) vs. (b)) with minor difference; 

(d) a PCB image completely different from (a); (e) correspondence map of 

the two heterogeneous images ((a) vs. (d)).  
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(a) (b) (c) 

Figure 4. The correspondence map for two uniform images: (a) the reference image; 

(b) the scene image; (c) the resulting gray-level correspondence map. 

(a) (b) (c) 

Figure 5. The correspondence map for two images containing discrete high-contrast 

gray values: (a) the reference image; (b) the scene image; (c) the resulting 

gray-level correspondence map.  
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 6. Effect of changes in window size: (a) reference PCB image; (b) faultless 

PCB image; (c) defective PCB image; (d)-(f) detection results of (a) vs. (b) 

from window sizes 55× , 2020 ×  and 3535× , respectively; (g)-(i) 

detection results of (a) vs. (c) from respective window sizes.  
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(a) 340Lux (b) 340Lux 

(c) 440Lux (d) 500Lux 

(e) 240Lux (f) 200Lux 

Figure 7. Sample images used to evaluate the effect of changes in illumination: (a) the 

reference image at 340 Lux; (b)-(f) the scene images at 340,440,500,240 and 

200 Luxes, respectively.  
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(a1) γ−1  at 500Lux (b1) 
Sλ  at 500Lux (c1) f∆  at 500Lux 

(a2) γ−1  at 440Lux (b2) 
Sλ  at 440Lux (c2) f∆  at 440Lux 

(a3) γ−1  at 340Lux (b3) 
S

λ  at 340Lux (c3) f∆  at 340Lux 

(a4) γ−1  at 240Lux (b4) Sλ  at 240Lux (c4) f∆  at 240Lux 

(a5) γ−1  at 200Lux (b5) Sλ  at 200Lux (c5) f∆  at 200Lux 

Figure 8. The resulting similarity measures as an intensity function: (a1)-(a5) 

magnitudes of γ−1  from images at illumination levels 500, 440, 340, 

240 and 200 Luxes; (b1)-(b5) magnitudes of 
S

λ  from images at 

respective illumination levels; (c1)-(c5) difference images (denoted by 

f∆ ) at respective illumination levels. 
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(a) (b) 

(c) (d) 

Figure 9. A displaced SMT component on the PCB: (a) the reference image; (b) the 

defective image; (c), (d) the respective detection results of γ−1  and Sλ
as an intensity function. 

(a) (b) 

(c) (d) 

Figure 10. A SMT component with wrong polarity on the PCB: (a) the reference 

image; (b) the defective image; (c), (d) the respective detection results of 

γ−1  and 
Sλ  as an intensity function. 
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Table 1. The resulting statistics of eigenvalue Sλ  and correlation coefficient γ

from the test images in Figures 2-5. 

Similarity measures Compared 

images 
Sλ γ

Fig. 2(a) vs. 2(b1) 0.85 0.999 

Fig. 2(a) vs. 2(b2) 6.55 0.997 

Fig. 2(a) vs. 2(b3) 4.38 0.993 

Fig. 3(a) vs. 3(b) 85.08 0.908 

Fig. 3(a) vs. 3(d) 949.59 0.000 

Fig. 4(a) vs. 4(b) 1.82 0.874 

Fig. 5(a) vs. 5(b) 0.81 0.999 


