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1. INTRODUCTION 

 

Burrs are the excess material in the form of irregular and sharp metal fragments 

attached to the machined surfaces of a mechanical part. The location and form of burrs are 

seldom predictable with any real accuracy and differ widely between parts which are 

otherwise essentially the same. In foundries, burrs are usually squeezed out the periphery of 

the mold and are irregular and vary considerably between parts. In this paper we aim at the 

development of a machine vision procedure for automatic detection of burrs and peripheral 

breakdown of industrial parts. The detected form and location of burrs can be applied to 

automatic robot deburring or fettling systems (Kazerooni 1988, Seliger and Hsieh 1991, 

Kramer and Shim 1990, Luo et al. 1983). Also, the non-contact detection results can be 

used for automatic visual inspection of peripheral defects of parts.  

  

Okawa (1984) has proposed a method of detecting the fins (extruding portions) and 

notches (intruding portions) of a cast pulley. This algorithm is based on the estimation of the 

pulley's center and radius, and is not extensible for detecting the burrs of arbitrary casting 

parts. Decker (1983) has studied automatic x-ray inspection of shrinkhole flaws inside 

aluminum casting parts. A flexible matching technique is applied, where the image under test 

is nonlinearly warped prior to forming the pixel-wise difference with the reference image. 

This method is computationally expensive and is only appropriate in the case of little noise 

and small displacement. 

  

Detection of burrs is equivalent to the recognition of partially occluded objects since 

the burrs attached to the periphery can be interpreted as the overlapping portions of the part.  
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In order to bring down the complexity of object matching, the high dimensional parameter 

space is generally reduced to a lower dimensional space. ϕ-s curve (Gonzalez and Woods 

1992) is a popular 1-D representation of 2-D boundaries, where ϕ is the angle plotted 

between a line tangent to the boundary and a reference line as a function of position s along 

the boundary. Cross-correlation (Perkins 1978), least-squares fit of salient subtemplates 

(Turney et al. 1985) and artificial neural network approaches (Tsang et al. 1992) are 

employed to recognize partially occluded objects in ϕ-s space. The measurement of tangent 

angle in a digitized image is sensitive to noise and quantization. Therefore, ϕ-s curve is not a 

reliable shape representation for locating the accurate position of an occluded part. 

  

Lin and Chellappa (1987) have developed a method for the classification of 2-D 

partial shapes represented by the Fourier descriptors (Zahn and Roskies 1972, Persoon and 

Fu 1977). The matching problem is formulated as one of estimating the Fourier descriptors 

of the unknown complete shape from the observations derived from an arbitrary rotated and 

scaled shape with missing segments. Gorman et. al. (1988) have obtained the local features 

by splitting a contour into segments which are described by the Fourier descriptors. A 

dynamic programming formulation is developed for matching the contours of a partial shape 

and the model shape.  

  

Point pattern matching (Goshtasby and Stockman 1985, Stockman et al. 1982, Wong 

et al. 1983) is also used for object recognition. The point correspondence algorithms search 

in the parameter space and find the transformation parameters that can match the most 

points in two sets of points, one contains the points extracted from the scene image and the 

other one contains the points extracted from the model image. These feature points are 

usually identified by curvature-based corner detection techniques (Rattarangsi and Chin 

1992, Bennett and Mac Donald 1975, Rosenfeld and Johnston 1973). Point pattern 

matching is computationally expensive, and may fail for burr detection since many false 

feature points will be extracted from the burr segments and some actual feature points may 

be covered by the burrs. 
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Davies (1989) has used the generalized Hough transform, GHT, (Ballard 1981) for 

object recognition under the effect of occlusions. In the GHT process for the recognition of 

arbitrary shapes, the model of the shape is built by choosing a reference point r' and a set of 

points lying on the shape's boundary.  The gradient direction at each point p'i along the 

boundary of the model object is evaluated.  Then it constructs a table, the so-called 

reference table, which stores the displacement vector d = r' - p'i and its corresponding 

gradient direction at point p'i.  In the recognition process, the gradient direction of every 

boundary point pj of the scene object is used as a hash-key to find its corresponding 

displacement vector d in the reference table.  The possible reference point of the scene 

object in the image is then given by r = pj + d.  An accumulator array is used to record the 

number of boundary points that generate the same reference point r. The maximum 

accumulated count in the array indicates evidence of a given model object present in the 

scene image. The Hough transform generally requires a tremendous amount of computing 

power and large storage. 

  

Most of the partial object recognition systems developed so far are computationally 

expensive since the matching processes have relied on sophisticated optimization techniques 

such as dynamic programming (Gorman et al. 1988), relaxation labeling (Rutkowski 1982, 

Davis 1979) or state-space searching (Chaudhury et al. 1990). Detection capability of these 

systems may rely on the appearance of salient features such as interior holes of parts and 

sharp corners on the boundaries. The estimated location of the object in the image is less 

accurate since the transformation parameters between the scene object and the model 

object are evaluated from the extracted features which are sensitive to noise and 

quantization. These recognition systems currently available are not practical approaches for 

detecting and locating burrs of parts in the industrial environment where high computational 

efficiency and high location accuracy are essential. 

  

In this paper, we aim at the detection of burrs (extruding portions) and peripheral 

defects (intruding portions) of flat casting parts or those that can be represented in two 

dimensional space. Let  model objects refer to the ideal casting part without any burrs or 
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peripheral breakdown, whereas scene objects refer to the parts that may have burrs 

attached to the peripheries or have peripheral breakdown. The outermost boundaries of 

model objects under study comprise piecewise arbitrary, smooth segments. The shape and 

size of the burrs or peripheral defects to be recognized can be generated in arbitrary forms 

and in random locations, but they must not cover or destroy the entire periphery of the 

casting part. 

  

The burr detection procedure is based on the fact that the irregular burrs show 

dramatic fluctuation of curvature changes in a small segment of the boundary, whereas a 

smooth segment without burrs presents a succession of low curvature points along the 

boundary.  Given a scene object, we arbitrarily select a few boundary points from the 

smooth segments of the object and connect these points to form a polygon. The matching 

process then finds a corresponding polygon from the boundary of the model object based 

on the geometric properties of the polygons and the smooth segments. The translation and 

rotational angle between the scene object and the model object are evaluated from these 

two equivalent polygons. Finally, the model object is superimposed onto the image of the 

scene object using the resulting transformation parameters, and the mismatching portions are 

identified as the burrs or peripheral defects accordingly. Figure 1 gives a representative 

example of a scene object with burrs and its corresponding model object. 

1 2 3 4V  V  V V ,  ,  and shown in Figure 1(a) are four arbitrary points selected from the 

smooth segments of the scene object, which are used as four vertices to form a quadrangle. 

1

'

2

'

3

'

4

'

V V  V V ,   ,  a n d  shown in Figure 1(b) are the four corresponding points on the 

boundary of the model object, which construct an identical quadrangle as that shown in 

Figure 1(a). Identification of vertices i

'

V  in the model image, each corresponding to a 

vertex Vi in the scene image, is the main challenge of this matching task. The proposed burr 

detection algorithm does not rely on any salient features of industrial parts such as interior 

holes and sharp corners on the boundary, and is invariant to translations and rotations of the 

parts. 
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This paper is organized as follows: In Section 2, the extraction process for smooth 

segments of a scene object is discussed. In Section 3, formation of a polygon in the scene 

image and a searching process for finding the corresponding polygon in the model image are 

presented. The estimation of the transformation parameters between the scene object and 

the model object followed by a hypothesis testing for the correctness of the estimated 

transformation is included in this section. In Section 4, experimental results are presented. 

Finally, the conclusion is given in Section 5. 

 

2. EXTRACTION OF SMOOTH SEGMENTS 

  

In order to construct a polygon that can be duplicated in both scene image and model 

image, the vertices of the polygon associated with the scene object must lie on the smooth 

segments of the boundary. The irregular shape of burrs or peripheral breakdown generally 

shows a series of zigzag patterns, and this will create a series of high curvature points along 

the boundary. In contrast, a smooth segment of the casting part will show small directional 

changes along the boundary, and this  will result in a series of low curvature points. The 

continuous version of curvature is defined as the magnitude of the rate of change of tangent 

slope with respect to the arc length. Many discrete algorithms (Rattarangsi and Chin 1992, 

Bennett and Mac Donald 1975, Rosenfeld and Johnston 1973) have been developed to 

measure the curvature of a point lying on a digital curve. 

  

In order to reduce noise and quantization effects on the curvature measurement, we 

define the curvature at a boundary point pi as the angle between two fitting lines, one is 

estimated from a set of neighboring points preceding pi and the other one is estimated from a 

set of neighboring points succeeding pi. Let the sequence of n digital points describe a 

closed boundary P, 

 

P =  { pi = (xi, yi),  i = 1, 2, ....., n  } 

 

where pi+1 is a neighbor of pi (modulo n), and (xi,yi) are the Cartesian coordinates of pi . 
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The curvature at point pi is defined by 

 

 

tan-1  |
m1 m2
1+m1m2

|        if  m1m2 ≠ −1

90o                                   if m1m2 =
∆ϕi = {
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-

  ≤ ∆ϕi ≤ 90o

−1

0o
                          

  

where m1 = the slope of the best fitting line, in the least-squares sense, given a set of points 

{pj, i−k ≤ j ≤ i} 
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m2 = the slope of the best fitted line given a set of points {pj, i ≤  j ≤  i+k}, 

         which can be obtained in a similar way as eq. (1). 

 

k = the region of support that defines the neighboring points of pi 

  

Since the smooth segments of a casting part change the curve directions gradually 

along the boundary, a point on the smooth segment tends to yield a small intersection angle 

∆ϕ . In contrast, a point on the burr segments will result in large intersection angle because 

the slopes of two fitting lines are noticeably different. Given a model object  comprising 

piecewise smooth linear and curved segments, the experimental results have shown that the 

curvature is generally less than 20o   at any point except the corners on the boundary.  

 

Let µ∆ϕ'  and   σ∆ϕ '  be the mean and standard deviation of intersection angles 

∆ϕ' i of the model object for all ∆ϕ ' i ≤ 20o
. The intersection  angles larger than 
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20o are excluded for the computation for µ∆ϕ'  and   σ∆ϕ '  since a corner point and a 

point on the burr segment are equivalent in terms of the curvature measurement. We then 

plot the ∆ϕ−s   curve of a scene object on a control chart, where ∆ϕ  is the 

intersection angle as a function of position s along the boundary of the scene object. Assume 

the intersection angles ∆ϕ '  of the model object  are normally distributed. The control 

limits of the control chart are given by 

  

[µ∆ϕ' −  3 σ∆ϕ ', ] µ∆ϕ' + 3 σ∆ϕ '   

  

The 3-sigma limits are determined so that an intersection angle ∆ϕ i  of the scene 

object has 99.7% probability to fall in the interval of the control limits if this intersection 

angle is associated with a point on the smooth segment of the scene object. A point with 

∆ϕ i  falling above the upper limit is interpreted as the one on the boundary of burrs. 

  

Let a run be a succession of ∆ϕi  falling below the upper limit  µ σ∆ϕ' + 3 ∆ϕ '  on 

the control chart. If the run length exceeds some predefined threshold Tr, the associated 

boundary points of the run are considered as a smooth segment without burrs, and the run is 

labeled as Si for a smooth segment i. The length of a run is accumulated until a point falling 

above the upper limit.  Then it is reinitialized to zero for subsequent runs. The region of 

support k for line fitting and run length threshold Tr are problem-dependent, and can be 

empirically determined. For determining an appropriate value of Tr, we have adopted a 

conservative principle that we prefer to misclassify a point on the smooth segment as a class 

of burrs rather than misclassify a point belonging to the burrs as a class of smooth segments 

since the vertices of polygons to be selected must be presented in both scene image and 

model image. 
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3. THE MATCHING ALGORITHM 

  

 3.1. Formation of a Polygon in the Scene Image 

  

Let S = { S1, S2, ......., SN } be the sequence of N smooth segments extracted from 

the boundary of the scene object. We may arbitrarily select M boundary points from the 

smooth segments in S and use these M points as the vertices to form an M-polygon. Based 

on the experimental results, we have found that M = 3 (i.e., a triangle) does not guarantee 

the success of burr detection, and M = 4 (i.e., a quadrangle) and M > 4 have resulted in 

similar performance. Since the increment of number of vertices M does not significantly 

improve the performance but increases the computational load in the matching process, 

quadrangle (4 vertices) is used to describe the matching algorithm developed in this paper 

and is suggested for practical implementation. However, the use of quadrangle is not a 

necessity of the proposed algorithm. The use of vertices larger than four is discussed in a 

later subsection. 

  

If N > 4, i.e., more than four smooth segments are extracted, we select the mid-point 

of each smooth segment Sj ∈ S as the vertex, where 

 

j =  
 
  i.

N
4 +0.5

 
      for i = 1, 2,  3, 4

 

 

[.] represents the operation for integer truncation. 

  

Since the points toward the ends of each smooth segment may connect to burr 

segments, the mid-point of a smooth segment ensures the selected vertex has its counterpart 

showing on the boundary of the model object. Sj is selected so that the vertices will 

distribute equally in terms of the distances between vertices. 

  



    9 

If N = 3, i.e., S = { S1, S2, S3 }, two vertices are selected from the points at the 1/3 

and 2/3 of the smooth segment with the largest run length, and two more vertices are 

selected, individually, from the points at the 1/2 of the remaining smooth segments.  

  

If N = 2, i.e., S = { S1, S2 }, two vertices are selected from the points at the 1/3 and 

2/3 of each smooth segment. The formation of a polygon  will fail if S1 and S2 are straight 

line segments and parallel to each other. 

  

If N = 1, i.e., S = { S1 }, four vertices are selected from the points at the 1/5, 2/5, 

3/5 and 4/5 of the smooth segment. The formation of a polygon will fail if S1 is a straight line 

segment. 

  

Let { V1, V2, V3, V4  }  be the set of four vertices selected from the  smooth 

segments of the scene object.  Given a scene object, denote 

  

Vi = the i-th vertex of the polygon, i = 1, 2, 3, 4 

  

(Xi,Yi) = the coordinates of Vi  

  

Lij = the line segment connecting vertex Vi and vertex Vj, i, j =  1, 2, 3, 4, i < j 

  

mij = slope of line segment Lij 

  

dij = length of line segment Lij 

  

θvi = interior angle at vertex Vi  

= angle between line segments Li-1,i and Li,i+1 (modulo 4) 

  

Ti = tangent line to the smooth segment at vertex Vi 
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mTi = slope of tangent line Ti  

  

Gi= gradient of the smooth segment at vertex Vi 

  

mGi = slope of gradient Gi  = −1/mTi 

  

θ(Gi,Gj) = angle between gradients Gi and Gj 

  

θ(Gi,Lij) = angle between gradient Gi and line segment Lij  

 

θ(Ti,Lij)  = angle between tangent Ti and line segment Lij  

  

The geometric properties and relations defined above are illustrated in Figure 2, and 

are computed as follows: 

  

mij = (Yj−Yi)/(Xj−Xi)      (2 )
 

dij = [(Xj−Xi)
2+(Yj−Yi)

2]1/2, i,j =  1, 2, 3,  4, i<j     (3)

  

  

                (4)θVi
 = tan-1 | mi,i+1−mi+1,i+2

1+mi,i+1mi+1,i+2
|, i = 1,  2, 3, 4  (modulo 4)

 

  

The tangent line Ti to the smooth segment at vertex Vi is estimated by fitting the 

neighboring points of Vi in the region of support k to a straight line.  Tangent slope mTi  is 

computed using eq. (1). 

  

θ(Gi,Gj) = tan-1 | mGi mGj

1+mGimGj
|, i,j = 1, 2, 3, 4,  i<j  −

        

θ(Gi,Lij) = tan-1 | mGi−mij

1+mGimij
|,  i,j = 1, 2, 3, 4,  i<j          

 (5)

 (6)
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 θvi, θ(Gi,Gj) and θ(Gi,Lij) are  restricted to the first quadrant, i.e. 

 

     
 ≤ θVi, θ(Gi,Gj), θ(Gi,Lij) ≤ 90o

0o

 

 θ(Ti,Lij) is defined in the full interval [0,  360o] , and is computed by the following 

formula: 

 < ∆ j ∆ j > = < j− i j− i  X , Y     X X , Y Y  >

  < 1, mTi > =  the tangent vector at vertex Vi

= the vector from Vi to Vj

φ  = tan-1 | ∆Yj−mTi

∆Xj−1
|  

Let

 

 Hence, 

 

 
{θ(Ti,Lij) = 

φ , if ∆Yj−mTi > 0 and ∆Xj−1 > 0

π−φ , if ∆Yj−mTi < 0 and ∆Xj−1 > 0
π+φ , if ∆Yj−mTi < 0 and ∆Xj−1 < 0

−φ ,  if ∆Yj−mTi > 0 and ∆Xj−1 < 0

(7)

 

  

3.2. Searching for the Polygon in the Model Image 

  

Given the quadrangle with vertices (V1, V2, V3, V4)  in the scene image, the 

transformation parameters of translation and rotational angle between the scene object and 

the model object can be determined by detecting four corresponding vertices lying on the 

boundary of the model object. The quadrangle constructed in the model image must have 

the same geometrical properties defined in eqs. (3) through (6). Given a model object, 

denote 

  

Vi' = the i-th vertex of the quadrangle constructed in the model image, i = 1, 2, 3, 4. 

Vi' is assumed to be the counterpart of Vi  

  

(Xi',Yi') = the coordinates of vertex Vi'  
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L'ij = line segment joining vertex Vi' and vertex Vj'  

  

m'ij = slope of L'ij 

  

d'ij = length of L'ij 

  

θ '
Vi = interior angle at vertex V'

i 

 

Ti' = tangent to the boundary at vertex Vi'  

  

m'
Ti = slope of T'

i  

  

G'i = gradient of the boundary curve at vertex Vi'  

  

m'
Gi = slope of G' i = −1/m'

Ti 

  

θ(G'
i, G'

j) = angle between G' i and G' j 

  

θ(G'
i,L

'
ij) = angle between G' i and L' ij 

  

Let P' = { pi' = (xi',yi'), i = 1, 2, ......, m } be the set of  m boundary points  of the 

model object. Given an arbitrary vertex V1' = ph' ∈ P' ,  Vj', j = 2, 3, 4, can be 

estimated by  

 

                        

 
  −sin  α  

  α sin     

1 d1j

1+( m'
T1)2

( )8   [] ]V'  
j  =  

 jX'  

    Y'
j   

  X'
1  

  1 Y'   
+

cos α  ]][ [ [= cos α   m'
T1

where   α  =  θ(T1,L1j)  = the angle between tangent T1 and line segment L1j  

determined in the scene image. 
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    The last term in the right-hand side of eq. (8) computes the vector  beginning at V1' 

and ending at Vj'. Vj', j = 2, 3, 4,  determined by eq. (8) may not lie on the boundary of 

the model object because of quantization effect. We must adjust Vj' to its nearest boundary 

point. In order to minimize the computational requirements for the shortest distance from Vj' 

to the boundary, we have set up a X-Y correspondence table in which the x-coordinates of 

all boundary points in P' are sorted in non-decreasing order. Xj' determined by eq. (8) is 

used as a pointer to find all corresponding y-coordinates of the boundary points that have 

their x-coordinates equal to Xj' from the X-Y correspondence table, and the one that has 

shortest distance to Vj' is selected. Due to quantization effect, the k neighboring points 

(region of support) of the adjusted Vj' are considered as the candidates for locating the true 

vertex associated with Vj. Note that the X-Y correspondence table is only set up once for 

the model object, and can be performed off-line. 

  

Vj' determined by eq. (8), for i = 2, 3, 4, is based on the assumption that  V1' at a 

given point on the model boundary is the counterpart of V1. We need to measure the 

degree of similarity between the quadrangle with vertices (V1, V2, V3, V4) and that with 

vertices  (V'
1, V'

2,  V'
3, V'

4).  Let 

 

 ∆dij =  | dij − d'
ij |,          i,j =  1, 2, 3,  4, i<j

V V V∆θ i = | θ i −  θ '
i |,       i =  1, 2,  3, 4

∆θij  = |  θ(Gi, Gj) − θ(G'
i,G

'
j) | +  | θ(Gi,Lij) − θ(G'

i ,L'
ij) | +

 |  θ(Gj, Lij) −  θ(G'
j, L'

ij) |, i, j = 1, 2,  3, 4, i<j
 

 

∆dij and ∆θVi  measure the similarity between two quadrangles in terms of the segment 

lengths and interior angles, respectively.  ∆θij further measures the geometric relations 

between the quadrangles and the smooth  segments of parts. If (V'
1, V'

2,  V'
3, V'

4) are the 
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true counterparts of (V1, V2,  V3, V4) , ∆dij, ∆θVi  and ∆θij  will have ideal values 

of zero. Define a similarity function for a given V'
1 =  p'

h ∈ P'
, 

 

    

                (9)

Eθ = ∑
4

i=1

 ∆θVi

EG = ∑
4

j=i+1
∑

3

i=1

 ∆θ ij

Ed  =  ∑
4

∑
3

 ∆dij
j=i+1 i=1

where

E(h) =  Ed +  Eθ + EG,     h =  1, 2, .. ... , m

 

  

By searching through all model boundary points p'
h in P' , the vertices 

(V'
1, V'

2,  V'
3, V'

4)  that yield minimal value of E(h) are the best match of (V1, V2,  V3, V4). 

Note that the measurement of E(h) is invariant to translations and rotations of objects. The 

detailed matching process is summarized as follows: 

  

       Given the model boundary points P' = { p'
h = (x'

h, y'
h), h=1, 2,.. ... , m }, 

         Let V'
1 =  p'

h    for h = 1,  2, .. ... , m 

Compute V'
j = (Xj,Yj) using eq. (8), for j = 2, 3, 4 

 Adjust V'
j  to its nearest boundary point, denoted by p'

c , using the X-Y 

correspondence table. 

 Let Nk(p'
c) represent the k neighboring points of p'

c, i.e., 

Nk(p'
c) = { p'

t, c−k ≤  t ≤ c+k } ∈ P'
 

Let V'
j = p'

t for t = c−k, c−k+1, ... ..,  c,  c+1, .. ... , c+k 

Compute et = ∆d1j + ∆θ1j 

 Let e* = min  { et, c−k ≤  t ≤ c+k } 
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 V'
j is assigned to the boundary point that generates minimal value e*, 

provided that ∆d j d1 < ε  , and t ∆θ εθ1 j <  , 

 

where  εd     and   εθ   are two predefined upper bounds on the amount of error 

inherent in measuring the lengths (∆d1j) and angles (∆θ1j), respectively. Experimental 

results have shown the length error is less than five pixels and angle error is within 10o. 

Therefore, εd = 5 and εθ = 30 (a summation of three angle differences) are used in this 

study.  If either  εd      ∆ d1j           > or   εθ   ∆θ1j > for all points in Nk(p'
c) , it is concluded 

that V'
1 is a false vertex for V1. Update V'

1 to the next boundary point in P' and repeat 

the matching procedure above. 

  

For a given (V'
1, V'

2,  V'
3, V'

4), compute the value of the similarity function,  

E(h) = Ed + Eθ +  EG, defined in eq. (9). 

Let E* = min  { E(h), h = 1,  2, .. ... , m } 

The vertices (V'
1, V'

2,  V'
3, V'

4) that generate minimal value E*
are identified as 

the best match of (V1, V2,  V3, V4). This concludes the matching process. 

   

Note that the vertices V'
2,  V'

3, and V'
4  are individually measured with respect to 

V'
1. No accumulated error is inherited for the estimation of V'

j, j = 2,  3,  4. Moreover, this 

makes the proposed matching procedure a parallel algorithm that can be implemented on a 

parallel processing machine. The computational complexity of this matching procedure is in 

the order of O(m), where m is the number of boundary points of the model object, and is 

independent of the size of burrs of the scene object. 

  

3.3. Estimation of transformation parameters 

  

We can find a transformation from model points to scene points by considering the 

mapping of the vertices (V'
1, V'

2,  V'
3, V'

4) in the model image to the corresponding vertices 
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(V1, V2,  V3, V4) in the scene image. The mapping consists of a rotation tθ followed by a 

translation (tx,ty). The rotational angle tθ is computed from the angle between two line 

segments, one connects Vi and Vi+1 in the scene image and the other one connects 

V'
i and V'

i+1 in the model image.  

 

Let  ∆Xi, i+1 = [ Xi −  X(i+1) mod 4 ] − [ X'
i −  X'

(i+1) mod 4 ], i = 1,  2, 3, 4

  ∆Yi, i+1 =  [ Yi − Y(i+1) mod 4 ] − [ Y'
i − Y'

(i+1) mod 4 ], i =  1, 2, 3,  4

βi, i+1 =  tan-1 | ∆Yi, i+1

∆Xi, i+1
|, i =  1, 2, 3,  4

and

     
β i, i+1 = {

β i, i+1,               if ∆Yi, i+1 >  0 and ∆Xi, i+1 >  0

i, i+1 i,i+1π−β ,          if ∆Y  <  0 and ∆X  >  0 
π+βi, i+1,           if ∆Yi, i+1 < 0 and ∆Xi, i+1 < 0
−βi, i+1,             if ∆Yi, i+1 > 0 and ∆Xi, i+1 < 0

i, i+1

 

 

The rotational angle tθ  is given by the mean of βi ,i+1, i.e., 

  

i=1

tθ = 1
4  ∑

4

 βi, i+1

  

  

The translation (tx,ty) is determined by the displacement between the centroid of the 

quadrangle (V1, V2,  V3, V4) and that of the quadrangle (V'
1, V'

2,  V'
3, V'

4). Hence, 

 

tx = 
1
4

 
 


∑

4

i=1

 Xi  − ∑
4

i=1

 X'
i 
 




ty = 
1
4

 
 


∑

4

i=1

 Yi  − ∑
4

i=1

 Y'
i 
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    By superimposing the model object onto the scene image, the extruding portions of 

burrs and the intruding portions of peripheral breakdown can be identified. (tθ, tx, ty) give 

the parameter values that transform points  of the model part to  the scene image.   

  

In order to verify the correctness of the estimated transformation, all boundary points 

lying on the smooth segments extracted from the scene object are mapped onto the model 

image using the transformation values (tθ, tx, ty). Recall that S = {S1, S2,  ... ..,  SN} is 

the set of smooth segments extracted from the boundary of the scene object. Let 

qi = (xqi
,yqi

) be a boundary point of the scene object and qi ∈ S. The mapping of qi  

onto the model image is given by 

 

∀qi ∈ Sθ x yT(t ,  t ,  t )−1
xqi

   
  yqi= [ 1 ][ ]

1

x'qi
 

  y'qi

  

  

where    ( )T t t t
t
tx y

x

yθ

θ θ

θ θ, ,
cos sin
sin cos=

−















 t  t
 t  t

0 0 1
 

 

If x'qi
   y'qi( , )  and its neighboring points defined within a window of size 2W+1 are all 

background points in the model image, then we conclude that (tθ, tx, ty) are the false 

transformation parameter values. If this case is encountered, we re-construct a polygon with 

five vertices (or more) from the set of smooth segments S and repeat the matching 

procedure. The size of the neighborhood window 2W+1 specifies the tolerable error of the 

estimated transformation. The hypothesis verification ensures the success of the matching 

procedure and location accuracy of the scene object. 

  

4. EXPERIMENTAL RESULTS 

  

The algorithm discussed previously has been tested on seven artificial objects and two 

real aluminum casting parts. The algorithm is implemented in C on a PC/486 personal 
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computer. The region of support k for line fitting is 15 (points). The run-length threshold Tr 

for smooth segment extraction is 30 (points). Quadrangles (four vertices) are used in  the 

construction of a polygon in the scene image and in the process of matching vertices in the 

model image. Each scene object of study is performed in four different quadrants 

(orientations), three trials in each quadrant,  so that the effect of object rotations can be 

observed. 

 

All images are taken under natural room lighting without the support of any special 

light sources.  In an industrial setting, we can use the backlighting technique for producing 

high-contrast images and eliminating the effect of arbitrary lighting of the environment.  In 

backlighting, the light source is directed at the camera and is located behind the part to be 

recognized.  The result of the image seen by the camera is a silhouette of the real part 

under study and, therefore, the boundary of the part can be reliably extracted.  In this work, 

the boundary points in an input image are extracted using a simple boundary following 

technique described in reference (Fairhurst 1988). 

 

The seven artificial objects are planar, dark parts placed on a white  background. 

The boundary lengths of these seven artificial model objects range from 457 to 807 pixels. 

The artificial scene objects contain simulated burrs with arbitrary shapes and in random  

locations. We have used the percentage of mismatching points, denoted by %, to evaluate ��

the performance of the proposed algorithm, which is defined as 

  

P% = 
Nm
Am

.100%
  

  

where Nm is the number of model points falling on the background of the scene image after 

the transformation. 

  

Am is the area of the model object, and is defined by the total number of model 

points in the image. 

  



    19 

Figures 3(a) through 9(a) illustrate the seven artificial objects. The left object in each 

image is a scene object with burrs, and the right object in the image represents the model 

object.  Table 1 summarizes the percentages of mismatching points, %, for each of the ��

seven artificial objects in four different quadrants.  From Table 1, it can be seen that the 

average percentages of mismatching points, %, over the seven artificial objects are 1.23%, ��

1.34%, 1.27% and 1.15% in quadrants I, II, III, and IV, respectively. These four values are 

fairly consistent regardless of the rotations of the scene objects. The overall average of % ��

is 1.25%. Note that the measurement of % includes the effects of quantization and lighting.��  

  

Figure 10(a) illustrates a real aluminum casting part, denoted by casting A. The scene 

object with burrs is shown at left and the model object is shown at right in the figure. Large 

portion of burrs is attached to the periphery of the scene object, as seen in Figure 10(a). 

The number of points on the digital boundary of model casting A is 1132. The bright lines 

shown in Figure 10(b) are the smooth segments extracted from the boundary of the scene 

object. Figure 10(c) illustrates the four vertices (V1, V2,  V3, V4) selected from the 

smooth segments of the scene object (the left), and the four corresponding vertices 

(V'
1, V'

2,  V'
3, V'

4) on the boundary of the model object (the right). The bright spots shown 

in Figure 10(c) indicate the locations of these vertices. Figure 10(d) shows the result of 

superimposing the model object on the scene image. The black portions represent the burrs 

of the scene object. 

 

Figures 11(a) and 11(b) show another real aluminum casting part, denoted by casting 

B.  The number of boundary points of model casting B is 982. Both Figures 10(d) and 

11(b) have demonstrated high accuracy of the estimated transformation parameters. The 

mean percentages of mismatching points, %, for casting A (Figure 10(a)) and casting B ��

(Figure 11(a)) are 2.64% and 2.54%, respectively. These two values are larger than 1.25% 

of the seven artificial objects due to the effects of reflection of aluminum surfaces and the 

thickness (10 mm on average) of the casting parts. 
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Since the generalized Hough transform (GHT) described in the introductory section is 

a well-known method for recognizing objects of arbitrary shapes under noisy or occlusion 

environment, it is also used in the experiments to compare with the proposed algorithm.  

Figures 3(c) through 9(c) show the results for the seven artificial objects, and Figures 12(a) 

and 12 (b) present the results for the real castings A and B using the generalized Hough 

transform.  In these figures, the outermost boundaries of the model objects are mapped 

into the scene images.  It can be seen from these figures that the generalized Hough 

transform fails in recognizing most of the nine test objects.  It has performed poorly for 

polygonal objects such as those in Figures 3, 4, 5 and 6.  The result is consistent with 

Grimson and Huttenlocher's finding (Grimson and Huttenlocher 1990) that the GHT can 

hypothesize many false solutions and its effectiveness is dramatically reduced for objects 

with moderate level of occlusion.  The generalized Hough transform succeeds in 

recognizing object 5 (Fig. 7), object 6 (Fig. 8) and casting part B (Fig. 11).  However, the 

estimated poses (orientations and translations) of the GHT are not as accurate as those of 

the proposed algorithm.  Therefore, the proposed algorithm compares very favorably with 

the generalized Hough transform for detecting burrs of casting parts. 

 

5. CONCLUSION 

  

In this paper, we have presented a method for detecting irregular burrs and peripheral 

defects of casting parts in arbitrary positions and orientations. There are two principal 

components to the method including smooth segment extraction in the scene image and 

polygon matching in the model image. The smooth segments of the scene object are 

identified by plotting the curvatures of points along the boundary on a control chart with 3-

sigma upper limit. Four (or more) points can be arbitrarily selected from the smooth 

segments and used as the vertices to form a polygon in the scene image. In the polygon 

matching process, the four vertices of the corresponding polygon in the model image are 

determined by taking a given point on the model boundary as a reference vertex and then 

computing the remaining vertices with respect to the reference vertex. A similarity function is 

defined to determine the best match of vertices, which measures the geometric properties 

between two polygons and their associated relations with the smooth boundaries. The 
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computational complexity of this matching algorithm is O(m), where m is the number of 

digital boundary points of the model object. Therefore, this algorithm is computationally 

efficient and is independent of the size of burrs of the scene object. The proposed matching 

method is a parallel algorithm that can be implemented on a parallel processing machine for 

real-time applications. 

  

Since the vertices of the polygon constructed in the scene image are selected from the 

extracted smooth segments, the proposed algorithm for burr detection does not rely on any 

salient features such as interior holes or sharp corners on the boundary of a casting part. The 

success of this burr detection system is also independent of the coverage percentage of 

burrs to the entire boundary of the part if none of the following are encountered: 1) the 

periphery of the scene object is completely surrounded by the burrs, 2) only one smooth 

segment is extracted, and this is a straight line segment, 3) only two smooth segments are 

extracted, and these two segments are parallel to each other, 4) all extracted smooth 

segments are concentric arcs.  In addition, the proposed algorithm is based on the 

assumption that burrs show high curvature changes in the boundary.  It is not  directly 

applicable to scene objects that have burrs as smooth as the boundaries of the model 

objects  
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