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Abstract 

 

     In this paper, we present a machine vision approach for detecting and inspecting circular 

parts and the parts with circular arcs on the contours. The method uses the Hough transform 

technique and utilizes the directional information of a normal to the circle at each boundary point.  

A cubic polynomial curve fitting is used to estimate the normal and determine the concavity of the 

fitted curve at each given boundary point. The proposed Hough transform method is a two-stage 

procedure. The first stage of the procedure uses a 2-D accumulator array to detect circle centers.  

Then the second stage uses a 1-D accumulator array to detect the radii of circles. The proposed 

method is robust to detect circular parts with partial occlusion such as peripheral defects or burrs.  

For an image of size N x N, the storage requirements are N2 and the time complexity is bounded 

by (N+m)n, where m is the number of circle centers detected in the first stage and n is the number 

of boundary points in the image. 
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                                 1. INTRODUCTION 

 

Detecting and locating circular parts from a digital image is important in industrial 

applications such as automatic inspection and robotic assembly. The radius and the center of a 

circle generally can be estimated by two distinct approaches: the least-squares curve fitting and 

the Hough transform. 

 

Given a set of coordinates which represent the boundary of a part and presumably belong to a 

circular arc, the parameters of the circle can be estimated by minimizing the least mean square 

errors between the given boundary points and the curve [1, 2, 3]. For a complex part involving 

circular arcs and other non-circular segments on the contour, the boundary points must be grouped 

into meaningful circular segments before the use of least-squares fitting methods. In addition, this 

approach is very sensitive to noise and occlusions of parts. 

 

The Hough transform (HT) techniques [4] for analytic shapes use a constraint equation to 

transform a set of feature points in image space into a set of accumulated votes in a parameter 

space. For each feature point, votes are accumulated in an accumulator array for all parameter 

combinations that satisfy the constraint equation. At the end of voting, those array elements 

containing large numbers of votes indicate the presence of the shape with the corresponding 

parameters. The HT converts a difficult global detection problem in image space into a more 

easily solved local peak detection problem in a parameter space. The primary benefits of using the 

HT is its robustness for noisy images and occluded parts. Since circles are completely defined by 

three parameters, namely the radius r and the coordinates of the center ( y,x ), the conventional 

HT requires a three-dimensional array to detect circles in an image scene. To search for a circle 

whose center is within an image of size N x N, and whose radius in not larger than N with 1 pixel 



resolution, would require a three-dimensional accumulator of size N3. This incurs considerable 

storage and computation. 

 

The use of the HT to detect circles was first introduced by Duda and Hart [5]. An edge 

detection process is carried out to identify significant edge points. Then the positions of all 

possible center locations are accumulated in a parameter space for all anticipated radii. Conker [6] 

used the gradient orientations of two neighboring edge points to estimate the center of a circle.  

Since the center of a circle must lie along the gradient direction of each edge point on the circle, 

the intersection point of gradients is identified as the center. This approach can not discriminate 

concentric circles of different radii and is difficult to estimate the circle center to the required 

accuracy. Yip et al. [7] used parallel edge points to estimate the parameters of a circle and an 

ellipse. This approach only requires a two-dimensional accumulator, but will fail to detect the  

occluded circles on which pairs of parallel edge points are not presented simultaneously. 

 

In this paper, we develop a fast two-stage Hough transform algorithm for detecting and 

inspecting partially occluded circular parts. The occlusion of parts may result from the peripheral 

breakdown, defects or burrs.  The circular portions of parts such as cams also can be detected 

and measured using such algorithm. The proposed method consists of a two-dimensional 

accumulator to find circle centers followed by a one-dimensional accumulator to determine circle 

radii. The first stage begins with a boundary following process to find the sequence of boundary 

points of each part in the image. A cubic polynomial curve fitting method is employed to estimate 

the normal and the concavity of the fitted curve at each boundary point.  Based on the normal 

direction and concavity information, the line segment that the circle center may lie on is 

determined. The votes are collected in a parameter plane based on the coordinates of each point 

on the resulting line segment. At the end of the first-stage voting process, those array elements 

containing large numbers of votes indicate the presence of circle centers. The second stage of the 



voting process calculates the radial distances between each center detected in the first stage and 

all boundary points in the image. The local peaks in the 1-D accumulator then indicate the 

presence of circle radii for a given circle center. 

 

This paper is organized as follows: In section 2, the cubic polynomial curve fitting method 

for estimating the normal and the arc concavity at a boundary point is first introduced. Then the 

detection of circle centers followed by the detection of circle radii is discussed. In section 3, 

experimental results are presented. The conclusion is given in section 4. 

 

2. THE HT WITH NORMAL DIRECTIONS 

 

Let the normal to a curve at point p be the line passing through p and perpendicular to the 

tangent there. Since the center of a circle must lie along the normal direction of each boundary 

point on the circle, the common intersection point of these normals indicate the center of the circle.  

In this paper, we estimate best, in the least-squares sense, the slope of a normal by fitting a small 

segment of a digital curve in an image to a continuous polynomial function. Since a small 

segment of circular arcs shown in the digital image may be represented by a straight line, 

especially the one in the horizontal or vertical direction, or by a curve involving an inflection 

point, a cubic polynomial function is employed to approximate the small segment. The image of 

scene parts is preprocessed by simple binary thresholding and boundary following [8] in order to 

extract the boundary points. Let the sequence of n digital points describe a boundary P,  

 

P = { pj = (xj , yj), j = 1, 2, ..., n } 

 

where pj+1 is adjacent to pj , and (xj , yj) is the Cartesian coordinates of pj in the image. 

 



Let pi = (xi , yi ) be the boundary point at which the normal is to be estimated. The region of 

support that defines the neighboring points of pi between points pi-k and pi+k for some integer k is 

given by  

 

N(pi ) = { pj | i - k≤  j≤  i + k } 

 

Shift all points pj in N(pi) by (-xi, -yi ) and translate pi to the origin of the new coordinate 

system. The size of the region of support k can be a predefined constant determined empirically, 

or it can be selected adaptively as proposed in [9]. The cubic polynomial function is represented 

by 

 

y = f(x) = a + bx + cx2 + dx3 

where a, b, c and d are the four unknown coefficients to be estimated. 

 

To minimize the accumulated distance errors between the observed points within the region 

of support and the curve, the objective function is given by 

 

min F(a, b, c, d) = ∑
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Differentiating F(a, b, c, d) with respect to a, b, c and d, and setting them to zero, we obtain 

 

                           X = A-1  B                                        (1) 

where 
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For a resulting function curve y = f(x), the first two derivatives of f at point pi with the new 

translated coordinates (0, 0) are given by 

 

                                   f '(0) = b 

 f "(0) = 2c 

f '(0) = b gives the slope of the tangent line to the fitted curve at pi . Thus, the slope of the normal 

line at pi is -1/b. The normal line at pi with its original coordinates (xi , yi ) has the following 

equation: 

 

                       y = (-1/b) x + (yi + xi / b)                                 (2) 

 

For a boundary point pi on the circle, the center of the circle must lie on the normal given by 

eq. (2). We can further determine the interval of the normal line that the center may lie on by 

examining the concavity of the circular arc. A curve f is concave upward if every tangent to the 

curve of f intersects the curve only at the point of tangency and otherwise lies entirely below the 

curve of f. A curve f is concave downward if every tangent lies above the curve of f. Therefore, 

a curve f is concave upward if f "(x) > 0, or f is concave downward if f "(x) < 0 for all x on an 

open interval. 

 



Let miny and maxy denote the lower bound and the upper bound, respectively, of the y 

coordinate of a circle center. For an image of size NxN, we may have 0ymin =  and 1Nymax −= .  

Consider a concave upward arc as shown in Figure 1(a). The circle center must lie along the 

half- line of the normal above the arc. Therefore, for a given point pi = ( ix , iy ) on the concave 

upward arc, the possible y-coordinate values of the circle center must be larger than yi, i.e., the y 

coordinate of the circle center is on the interval [ maxi y,y ]. Similarly, consider a concave 

downward arc as shown in Figure 1(b). The circle center must lie along the half- line of the normal 

below the arc. For a given point pi = ( ix , iy ) on the concave downward arc, the possible 

y-coordinate values of the center must be smaller than yi, i.e., the y coordinate of the circle center 

is on the interval [ imin y,y ]. For a given y-coordinate value y, the corresponding x-coordinate 

value x on a normal line at point pi = ( ix , iy ) can be computed by rewriting eq.(2) as follows: 

 

                              x = ii xybyb +⋅+⋅−  

                        Or, 

                              x = ( ) ( ) ii
'' xy0fy0f +⋅+⋅−  

The voting process for detecting the circle centers is proceeded as follows: 

Let P = { pi = (xi , yi ), i = 1, 2, ..., n} be the sequence of n boundary points of a part in the image. 

 

For every boundary point pi = ( ix , iy ), i = 1, 2, ..., n 

       Estimate the cubic polynomial function f(x) at point pi = ( ix , iy ) using eq. (1) 
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                 Compute x = ( ) ( ) ii
'' xy0fy0f +⋅+⋅−  



                 Let ( )y,xAc  = ( )y,xAc +1 

             End 

     End 

   

This concludes the first stage of the voting process for circle center detection. The 

accumulator elements ( )y,xAc  containing sufficiently large numbers of votes against a 

predefined threshold Td are registered as the candidates of circle centers. These resulting centers 

are the input to the second stage of the voting process for radii detection. 

 

Let  C = { jc  = ( jj y,x ), j = 1, 2, ..., m } denote a set of m centers of circular arcs detected 

in the first stage of the voting process. The voting process for detecting the radii of circles is given 

as follows: 

 

     For every circle center ( )jjj y,x c = , j = 1, 2, ..., m 

        Clean AR (r) for all r 

        For every boundary point pi = ( ii y,x ), i = 1, 2, ..., n 

           Compute r = [( ix - jx )2 + ( iy  - jy )2] 1/2  

           Let AR(r) = AR(r) + 1 

        End 

        If AR (r) is greater than the predefined threshold Td  , r is the radius of the circle  

        centered at cj . 

     End  

 

This concludes the second stage of the voting process for radii detection. Note that a given 

center cj may have many radii if it is the common center of concentric circles. 



 

The two-dimensional accumulator array ( )y,xAc  used in the first stage can be eliminated 

as soon as the circle centers are recorded in the set C. This released memory can be used in the 

second stage for the one-dimensional accumulator array AR(r). Therefore, the searching of a circle 

whose center is within an image of size of N x N, and whose radius is less than or equal to N (or is 

specified with the precision up to N2 quantization increments), only requires a storage space of N2.  

The time complexity of the proposed two-stage algorithm in the worst case is given by  

 

nmnN ⋅+⋅  

 

where N is the image size in the y dimension, n is the number of boundary points in the image, 

and m is the number of circle centers detected in the first stage. Since the concavity information of 

circular arcs is utilized, the number of possible y-coordinate values is less than N. nN ⋅  and 

nm ⋅ specify the time requirements for the first stage and the second stage of the voting process, 

respectively.  

 

3. EXPERIMENTAL RESULTS 

  

Figures 2(a) and 2(b) demonstrate a circle with a full boundary (2π), and a half of the 

boundary (π), respectively. The circles with partial distortion on the circle boundaries are also 

displayed in the figures. The bright spots in the images indicate the common intersection points of 

the normal lines, and are the locations  of circle centers. The occlusion of objects does not affect 

the significance of the center location. The more boundary points available on a circle, the 

brighter (larger vote counts) the spots and more concentrated the intersection points to the ideal 

center locations. 

 



In the experiments, the region of support k = 8 is used for curve fitting. Twenty planar, dark 

circular objects with the radii ranging from 25 to 60 pixels are tested using the proposed algorithm.  

The resulting mean radius deviation is within 1. 2 pixels. In order to evaluate the performance of 

the proposed method, ten synthetic circles with two radii and various arc angles are also analyzed 

so that the estimated circle centers and radii can be compared with the ideal parameter values.  

The ten circles of study are generated in an image of size 512 x 480 pixels. The digital boundaries 

of circles are created such that  

 

max { |xi – xi-1|, |yi– yi-1| } i  , 1 ∀=  

 

Here (xi, yi ) are the coordinates of boundary points generated from the equation of a circle with 

the radius r and the center at (254, 243) approximating to the center of the image, i. e., 

 

(xi - 254)2 + (yi - 243)2 = r2,  i ∀  

Also, (x i, yi ) are truncated to their nearest integers to represent the coordinates in image space.  

Table 1 shows the performance of the estimated parameters of two synthetic circles, one with 

radius 100 pixels and the other one with radius 50 pixels. Each circle is tested under various arc 

angles (arc lengths), ranging from 2π(100%), 3π/2 (75%),π(50%),π/2 (25%) toπ/4 (12.5%).  

Each dimension of the parameter space is quantized to resolve 1 pixel changes. The errors of the 

estimated parameters, the x and y coordinates of the centers and the radii, are within 1 pixel for 

both circles with the arc angles larger than or equal to π (50%). All estimated errors of the circle 

parameters for the small circle of radius 50 are within 1 pixel even though the arc angle is as small 

asπ/4 (12.5%). However, the estimated parameter errors are more significant (up to 5 pixels) for 

the large circle of radius 100 with the arc angles smaller thanπ(50%). This is due to the impact of 

the angular deviation of the estimated normal for the large circle. The accuracy of the estimated 

center location is determined by the precision of the normal slope derived from the cubic 



polynomial fitting method. If an estimated normal has angular deviation φ∆  with respect to the 

ideal normal, then the displacement from the ideal center to the estimated normal line is given by  

r．sin φ∆ , where r is the ideal radius (see Figure 3). Therefore, the estimated parameter errors of 

the large circle is larger than those of the small circle. Experimental results have shown that the 

mean angular deviation of a normal line using the cubic polynomial fitting method is within 2o. 

 

The applications of the proposed method to the detection of circular arcs of industrial parts 

are demonstrated in Figures 4 and 5. Figures 4(a) and 4(c) show the real images of two oil seals, 

one with peripheral defect, and the other one with burrs, respectively. The estimated circles of 

these two oil seals are presented in Figures 4(b) and 4(d).  Note that the extruding portions 

(peripheral defect and burrs) of the oil seals can be easily detected in the image since they are 

located outside the estimated circles. The crosses "+" shown in the figures mark the locations of 

the estimated circle centers. The estimated circles coincide with the circular portions of the 

boundaries of the parts, as seen in Figures 4(b) and 4(d). Figure 5(a) illustrates the binary image 

of a plate cam, and Figure 5(b) shows two detected circular arcs on the contour of the cam.  

Figures 5(c) and 5(e) show the profiles of a brake shoe and a friction plate, respectively.  The  

estimated circles for the outermost circular arcs of these two mechanical parts are illustrated in 

Figures 5(d) and 5(f). 

 

4. CONCLUSION 

 

     In this paper, we have presented a two-stage Hough transform method for detecting circular 

parts with partial occlusion and parts with circular arcs on the contours. The resulting circle of the 

proposed method can be further extended to detect the peripheral breakdown, defects or burrs of a 

circular parts by evaluating the variation of radial distances between the estimated center and 

boundary points.   



 

The proposed method utilizes the directional information of the normal at each boundary 

point on the circle to increase the computational efficiency and reduce storage requirements. A 

cubic polynomial curve fitting is employed to estimate the slope angle of a normal and determine 

the concavity of the fitted curve. The first stage of the voting process first determines the line 

segment of the normal at each boundary point and accumulates the occurrences of all coordinates 

on the line segment in a 2-D accumulator. The second stage uses a 1-D accumulator to store the 

number of individual distances between each estimated circle center and all boundary points.  

For an image of size N x N, this proposed method only requires an accumulator of size N2 and the 

time complexity is bounded by (N+m)n, where m is the number of circle centers detected in the 

first stage and n is the number of boundary points in the image. 
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