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1. Introduction 

 

 Automatic visual inspection algorithms for printed circuit boards (PCBs) have 

long been focused on geometrical defects of conductive paths [1-4].  Less attention 

has been paid to the defect inspection of plated surfaces on PCBs.  In this paper, we 

propose two entropy measures of chromatic and directional regularities for the 

automatic defect inspection of gold-plated fingers (edge connectors) on PCBs. 

 

     Connector fingers are metallic pads at the edge of a PCB, which plug into an 

external socket.  The fingers are often plated with gold in order to ensure a good 

electrical interface for interconnecting external modules, and provide resistance to 

oxidation [5].  The gold contacts need to be inspected after plating to ensure that an 

adequate coating of gold has been applied.  Figures 1(a)-1(d) show the defect types 

commonly found on gold-plated surfaces.  A layer of gold that is too thin (Figure 

1(a)) or contains pinholes (Figure 1(b)) causes the underlying copper to corrode.  

Too great a current density in the plating process can result in a very rough or 

“burned” surface as the one shown in Figure 1(c).  It can be seen from Figure 1 that 

the gold-plated surface is not uniform in the image, but involves horizontal texture.  

The inspection process is far more complicated than the simple binary thresholding of 



 2

a gray level image.  Figures 2(a)-2(d) show the binarization results of the gray-level 

versions of gold finger images in Figures 1(a)-1(d), using the well-known Otsu’s 

thresholding method [6].  The resulting binary images contain horizontally textured 

patterns along with randomly distributed noise, and make the discrimination between 

defects and noise difficult. 

 

     The gold-plated surfaces of edge fingers can be considered as a homogeneous 

texture in the image.  Traditional texture analysis techniques such as co-occurrence 

matrix methods [7, 8] in the spatial domain, and Fourier-based textural features in the 

spectral domain [9, 10] are too computationally expensive to develop an efficient 

inspection system for gold-plated surfaces.  In this study, we develop two efficient 

entropy measures to evaluate chromatic and directional anomalies of gold-plated 

surfaces.  Since the pioneer work of Shannon [11], entropy has been used as a 

measure of complexity of information content in a signal.  In image analysis, entropy 

of gray- level histogram has been used as a measure for texture analysis [12-14].  

Desoky and Hall [12], and Jernigan and D’Astous [15] developed entropy techniques 

that measure the distribution of spectral components of a gray- level image in the 

frequency domain.  They reported that the entropy based on power spectrum is more 

useful than the one based on gray- level histogram for describing changes in texture.  

The main disadvantage of the frequency-based entropy method is the computational 

burden of the Fourier transform. 

 

     The traditional entropy measures for texture analysis are solely relied on the 

information of gray level distribution in an image.  They are not appropriate for 

gold-plated surface inspection because they ignore both chromatic information and 

structural variation.  Therefore, in this study we develop two entropy measures to 
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evaluate the regularities of chromatic and directional distributions of gold-plated 

fingers in a color image.  One entropy measure uses two chromatic features extracted 

from a color model to detect color anomalies such as copper exposure, and the other 

measure uses edge angles to detect structural defects such as roughness on gold-plated 

surfaces. 

 

     This paper is organized as follows: Section 2 first describes the entropy of 

chromatic distribution in the CIELUV color space, and then defines the entropy of 

directional distribution based on Sobel edge gradients.  Section 3 presents the 

experimental results for evaluating the efficacy of the proposed entropy measures.  

The paper is concluded in Section 4. 

 

2. Entropy measures of regularity 

 

     Entropy can be used as a measure of regularity of information in a signal.  Let 

x  be a discrete random variable whose possible values are ix , ni ,...,2,1= , and 

)( ixP  the probability of ix .  The entropy of the random variable x  is defined as  
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xE  quantifies the amount of information of the random variable x .  Note that xE  

is always positive or null.  xE  is null only if among all the possible random values 

there is one with 1)( =ixP .  xE  is maximum when all random values have the 

same probability, i.e., nxP i 1)( = .  The less uniform the probability distribution, 

the lower the resultant entropy value, i.e., the lower the entropy value, the higher the 
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regularity of an observed signal.  In this paper, we propose two entropy measures 

that quantify individually the average amounts of color and directional distributions in 

gold-plated surfaces.  These two entropy measures are described separately in the 

following subsections. 

 

2.1 Entropy of chromatic distribution 

     Traditional entropy measure of information in an image is solely based on the 

gray- level histogram.  Chromatic information of textured images is not fully utilized 

to enhance the discrimination.  Many defects found on gold-plated surfaces such as 

pinhole and copper exposure can be considered as local color variations that break 

homogeneity in a color image.  The entropy of chromatic distribution in a color 

image can be estimated from its color histogram.  In this study, the CIELUV color 

space [16] is used for color feature representation.  The CIELUV space requires an 

intermediate transform to the XYZ space from the system-dependent RGB space.  

The transform for NTSC color vision sensor is given by 
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The CIELUV equation is then applied for tristimulus values X, Y and Z: 
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nY , '
nu , and '

nv  are the chromaticity coordinates of the reference white.  *L  

represents lightness.  The *u  and *v  dimensions correlate with red-green and 

yellow-blue chroma perceptions. 

 

     The well-known and commonly used color space CIELAB was also originally 

adopted for color transformation in this study.  An empirical study showed that 

CIELUV and CIELAB perform similarly in many cases for gold-plated surface 

inspection, but CIELUV is slightly better than CIELAB in terms of the detected defect 

sizes.  The CIELUV color space can also be represented in terms of cylindrical 

coordinates, which provide predictors of chroma *
uvC  and hue uvh  as expressed 

below: 

              2/122* ]*)(*)[( vuCuv +=  

              )
*
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u
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     The entropy measure of chromatic distribution in an image can be calculated 

from the color histogram in 1-D (single color feature), 2-D (two color features) and 

3-D (all three color features of a color space).  The resolution of the color histogram 

can be chosen by specifying the number of bins along each axis of color features.  In 

1-D color histogram, the hue uvh  is used to evaluate the chromatic regularity of the 

gold-plated surface.  Let the axis of color feature uvh  be divided into cN  

subintervals of equal width.  Denote )(ifc  by the number of pixels falling in the 
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subinterval i , cNi ,...,2,1= .  The probability of a color in subinterval i  can be 

calculated by 

CR
if

iP c
c ⋅

=
)(

)(                                           (2) 

 

where CR ×  is the effective image size used for evaluating the regularity.  The 

color entropy with a single color feature is defined by  

       ∑
=

⋅−=
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         In 2-D color histogram, color features *u  and *v  are adopted for 

evaluating color regularity.  The *u  and *v  axes of the *)*,( vu  space are 

individually partitioned into cN  subintervals of equal width.  Given an image of 

size CR × , let ),( jifc  be the number of pixels that fall within the thji ),(  grid in 

the *)*,( vu  space, cNji ,...,2,1, = .  The probability of a color falling in the 

thji ),(  grid is given by 
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The color entropy with two color features *)*,( vu  is defined by 
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     The 3-D color histogram can be constructed in a similar way as the 2-D one by 

including all three color features *L , *u  and *v  of the CIELUV space.  Our 

empirical study showed that 2cE  (color entropy with two color features) and 3cE  

(color entropy with three color features) measures perform equally well for 

gold-plated surface inspection.  However, the computation time of 3cE  is more 

than 70 times over that of 2cE . 
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     In order to evaluate the effectiveness of entropy measures 1cE  and 2cE , 

Figure 3(a1)-3(a5) show, respectively, the images of a single color band, three discrete 

color bands, five discrete color bands, ten discrete color bands, and a plate with 

continuous color spectrum ranging from violet to red.  The entropy values of 1cE  

and 2cE  as a function of the number of color bands in an image are depicted in 

Figure 3(b).  The corresponding entropy statistics are summarized in Table 1.  It 

can be seen from Figure 3(b) that the entropy value gets larger as the number of colors 

added to the image increases for both 1cE  and 2cE .  The plot of 2cE  is quite 

steep, whereas the plot of 1cE  is relatively flat.  The entropy measure with two 

color features ( 2cE ) has better discrimination to detect chromatic variations, 

compared to the entropy measure with single color feature ( 1cE ).  Figure 4(a) shows 

a gold finger (marked with a rectangular frame) with a void defect, and Figure 4(b) 

presents a plot of the 2cE  function in 3-D perspective.  It shows that the void is 

notably high in the 3-D plot.  Based on the consideration of detection effectiveness 

and computational efficiency, entropy measure 2cE  is the best choice for detecting 

color variation in gold-plated surfaces. 

 

2.2 Entropy of directional distribution 

     Nick defects on gold-plated surfaces cause not only chromatic variation in color 

but also significant directional variation in structure.  A rough (or “burned”) surface 

due to excessive current density in the plating process may not show significant color 

variation, but may present structure variation in an image.  The measure of 

directional regularity using entropy proceeds as follows. 

 

     Let ),( yxR , ),( yxG  and ),( yxB  denote the R, G and B stimulus values at 
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pixel coordinates ),( yx , respectively.  The intensity at pixel coordinates ),( yx  is 

defined by  

              )],(),(),([
3
1

),( yxByxGyxRyxf ++=  

 

The directional angle at pixel ),( yx  is given by the Sobel gradient operator [17]: 
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     Divide the full range of directional angle θ  into θN  subintervals of equal 

width.  Denote )(ifθ  by the number of edge points falling in the subinterval i , 

θNi ,...,2,1= .  The probability of directional angle in the subinterval i  can be 

calculated by 
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The entropy measure of directional distribution is given by 
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     In order to evaluate the effectiveness of the direction entropy θE , Figures 

5(a1)-5(a4) show the line-patterned images that contain one, two, three and four 

directions, respectively.  Figure 5(a5) is an isotropic texture of sandpaper.  The plot 
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of θE  values as a function of the number of directions is presented in Figure 5(b).  

It shows that the θE  value increases consistently as the textural structure becomes 

complicated.  An isotropic texture has the largest θE  value of 3.58, while a simple 

line-patterned texture with a single direction has a small θE  value of 1.05.  Figure 

6(a) shows a gold finger (marked with a rectangular frame) with a nick defect.  

Figure 6(b) presents a plot of the θE  function in 3-D perspective.  It shows that the 

defective region is visibly higher than the homogeneous region in the 3-D plot.  2cE  

along with θE  can be sufficiently used to detect various defects on gold-plated 

surfaces. 

 

3. Experimental results 

 

     In this section, we present the experimental results for evaluating the efficacy of 

the proposed entropy measures for gold-plated surface inspection.  In our 

implementations, all algorithms are programmed in the C language and executed on a 

personal computer with a Pentium III-800 Mhz processor.  The image size is 

640× 480 pixels with eight bits of intensity per color band.  In order to obtain a 

sufficient resolution for inspecting various plating defects, and yet contain as many 

gold fingers as possible in a sensor image, an input image contains 7 gold fingers, 

each of 120× 45 pixels.  The number of partitioned subintervals of each color feature 

of *u  and *v  used in color entropy 2cE  is 50.  Therefore, the 2-D color 

histogram is a 50× 50 matrix.  The θ -axis of direction entropy θE  is divided into 

subintervals of equal width °5 . 

 

     In the experiments, the entropy is computed by sliding a neighborhood window 

in a pixel-by-pixel basis throughout the entire gold finger regions in the sensor image.  
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A pixel defined in a small neighborhood window in a homogeneous gold-plated 

region will have small entropy value, and the one in any irregular region will yield a 

large entropy value.  Therefore, we employ the simple statistical process control 

principle to set up the threshold for distinguishing defective regions from 

homogeneous regions in the resulting entropy image.  The threshold used in the 

experiment is given by 

              EE k σµ ⋅+  

 

where Eµ  and Eσ  are the mean and standard deviation of entropy values in 

defect- free sample images.  k  is a control constant.  A 3-sigma standard has been 

used for detecting anomalies.  Pixels with entropy values larger than the threshold 

EE σµ 3+  will be shown in white, and the ones with entropy values below the 

threshold will appear as black in the resulting binary image. 

 

     In order to evaluate the effect of size changes of neighborhood window, the 

detection results of 2cE  from the window sizes of 7 × 7, 11 × 11 and 19× 19 are 

shown in Figure 7 (pinhole defect) and Figure 8 (nick defect).  It can be seen from 

Figures 7 and 8 that too small the window size can not sufficiently identify all 

defective pixels, and reduces the size of the detected defect.  However, too large the 

window size may not generate better detection result, and is more computationally 

expensive.  With the image resolution used in the experiment, the neighborhood 

window size of 11 × 11 pixels is effective and efficient to detect the detail of defects in 

gold-plated surfaces. 

 

     In chromatic defect detection, Figures 9(a1)-9(d1) show four test images of 

gold-plated surfaces that contain various chromatic defects.  Without loss visibility, 
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all test samples of colored gold fingers are displayed with gray- level images.  The 

detection results from color entropy 2cE  are illustrated in Figures 9(a2)-9(d2).  

They reveal that the 2cE  measure is very effective to identify local anomalies in 

gold-plated surfaces.  In structural defect detection, Figures 10(a1) and 10(b1) show 

two test images that contain structural defects.  It can be seen from Figure 10 that 

both entropy measures 2cE  and θE  can detect the linear defects, but measure θE  

is slightly better than measure 2cE  in terms of the detected shapes of defects. 

 

     As aforementioned in the previous section, a rough (or “burned”) gold-plated 

surface due to excessive current density may result in homogeneous color distribution 

in the whole image, and the color entropy 2cE  fails to identify the rough surface.  

In roughness detection, Figures 11(a)-11(c) show respectively the images of a 

defect- free surface, a fine surface with a local defect of copper exposure, and a burned 

surface.  The mean and standard deviation of θE  values for each gold finger from 

left to right in each of the three images are tabulated in Table 2.  It shows that the 

mean θE  value for fine surfaces as the ones shown in Figures 11(a) and 11(b) is 

between 0.1 and 0.5, whereas the mean θE  value for the burned surface is distinctly 

larger than 1.0.  Figure 11(d) displays the processing result of the burned surface, in 

which the pixels with θE  value larger than 0.7 are shown in white and the remaining 

pixels appear as black.  The entropy measure θE  gives distinct discrimination 

between regular and rough surfaces. 
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4. Conclusions 

 

     Many automated visual inspection techniques for printed circuit boards have 

been developed in the past years.  However, most of the inspection methods use only 

gray- level information of PCB images and focus mainly on geometrical defects of 

conductive paths.  In this paper, we have proposed two entropy measures for surface 

inspection of gold fingers on PCBs.  The entropy measure 2cE  uses two color 

features *u  and *v  from the CIELUV color space to detect chromatic anomalies, 

and the entropy measure θE  uses edge angles to detect structural variations.  

Experimental results reveal that entropy measure 2cE  alone is sufficient to detect 

various chromatic and structural defects on gold-plated surfaces, except for the 

roughness defect.  The entropy measure θE  is ideally suited for identifying the 

rough plating surface since a regular surface and a coarse one yield distinct values of 

θE . 

 

     With the given system setup in the experiment (a gold finger of size 120×45 

pixels and 7 edge fingers in one image; neighborhood window of size 11 ×11; 50 

partitioned subintervals for axes *u  and *v , and 36 subintervals for axis θ ), the 

computation time is within 1 second.  It is competitive with the inspection time of 

human personnel.  On- line inspection of gold-plated fingers can be realized with the 

two entropy measures 2cE  and θE .  
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(a)  (b) 

 

 

 
(c)  (d) 

 
Figure 1. Common defect types found on gold-plated fingers: (a) Copper exposure. (b) 

Pinhole. (c) Rough surface. (d) Nick. 
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(a)  (b) 

 

 

 
(c)  (d) 

 
Figure 2. The resultant binary images corresponding to (a)-(d) in Figure 1, 

respectively. 
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(a1) (a2) (a3) (a4) (a5) 

 

 

 

 

 

 

 

(b) 
 

Figure 3. (a1)-(a5) Color image plates containing one color band, 3 color bands, 5 
color bands, 10 color bands and continuous color spectrum, respectively. (b) 
The plots of 1cE  and 2cE  as a function of the number of color bands in 

an image. 
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(a)  (b) 
 
Figure 4. (a) The image of a gold finger containing a void defect. (b) The 

corresponding 2cE  function in 3-D perspective (the finger in the middle 

of the image). 
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(a1) θE =1.05 (a2) θE =2.30 (a3) θE =2.84 (a4) θE =3.17 (a5) θE =3.58 

 

 

 

 

 

 

 

 

(b) 
 
Figure 5. (a1)-(a4) Line-patterned images containing one, two, three and four 

directions, respectively. (a5) An isotropic texture of sandpaper. (b) The plot 
of θE  as a function of the number of directions in an image. 
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(a)  (b) 
 
Figure 6. (a) The image of a gold finger containing a nick. (b) The corresponding θE  

function in 3-D perspective (the left finger in the image). 
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(a)  (b) 77 ×  

 

 

 
(c) 1111×   (d) 1919×  

 
Figure 7. Effect of neighborhood window sizes for the gold fingers with a pinhole: (a) 

The original image. (b)-(d) The processing results from window sizes 77 × , 
1111×  and 1919× , respectively. 

 
 

 

 

 
(a)  (b) 77 ×  

 

 

 
(c) 1111×   (d) 1919×  

 
Figure 8. Effect of neighborhood window sizes for the gold fingers with a nick: (a) 

The original image. (b)-(d) The processing results from window sizes 77 × , 
1111×  and 1919× , respectively. 
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(a1)  (a2) 

 

 

 

 
(b1)  (b2) 

 

 

 
(c1)  (c2) 

 

 

 
(d1)  (d2) 

 
Figure 9. (a1)-(d1) The gold finger images with various chromatic defects on the 

surfaces. (a2)-(d2) The detection results of the corresponding images 
(a1)-(d1), respectively.  
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(a1)  (b1) 

 

 

(a2) 2cE   (b2) 2cE  

 

 

 

(a3) θE   (b3) θE  

 
Figure 10. (a1), (b1) The gold fingers with structural defects. (a2), (b2) The 

corresponding detection results from entropy 2cE . (a3), (b3) The 
corresponding detection results from entropy θE . 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 11. The sample images used for evaluating the θE  values of rough surfaces: 

(a) Fine gold-plated surfaces without defects. (b) Fine surfaces with 
exposed copper. (c) Rough(burned) surface. (d) The binarization result of 
(c). 
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Table 1. The entropy statistics for color images in Figures 3(a1)-(a5). 
 

Color plates Entropy 
measure Fig. 3(a1) Fig. 3(a2) Fig. 3(a3) Fig. 3(a4) Fig. 3(a5) 

1cE  0.67 1.61 1.83 2.12 2.13 

2cE  1.25 2.43 2.93 3.99 4.81 

 
 
Table 2. The θE  statistics of images with varying surface roughness. 

 
Gold finger number (from left to right) 

Image Statistics 1 2 3 4 5 6 7 
Mean 0.07 0.28 0.53 0.53 0.26 0.15 0.16 

Fig. 11(a) Std.dev. 0.09 0.28 0.46 0.40 0.29 0.16 0.19 
Mean 0.11 0.16 0.11 0.08 0.26 0.32 0.32 

Fig. 11(b) Std.dev. 0.27 0.36 0.21 0.20 0.37 0.40 0.33 
Mean 1.51 1.54 1.68 1.66 1.58 1.52 1.39 

Fig. 11(c) Std.dev. 0.62 0.58 0.65 0.66 0.50 0.54 0.62 
 
 
 
 


