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ABSTRACT 
 

Normalized cross correlation has been used extensively for many machine vision 
applications, but the traditional normalized correlation operation does not meet speed 
requirements for time-critical applications.  In this paper, we propose a fast 
normalized cross correlation computation for defect detection application.  A 
sum-table scheme is utilized, which allows the calculations of image mean, image 
variance and cross-correlation between images to be invariant to the size of template 
window.  Given larger images of size NM ×  and the neighborhood window of size 

nm × , the computational complexity can be significantly reduced from 
)( NMnmO ⋅⋅⋅ with the traditional normalized correlation operation to only 

)( NMO ⋅  with the proposed sum-table scheme. 
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1. INTRODUCTION 

 

 

Normalized cross correlation (NCC) has been commonly used as a metric to 

evaluate the degree of similarity (or dissimilarity) between two compared images.  

The main advantage of the normalized cross correlation over the cross correlation is 

that it is less sensitive to linear changes in the amplitude of illumination in the two 

compared images.  Furthermore, the NCC is confined in the range between –1 and 1.  

The setting of detection threshold value is much easier than the cross correlation.  

The NCC does not have a simple frequency domain expression.  It cannot be directly 

computed using the more efficient FFT (Fast Fourier Transform) in the spectral 

domain.  Its computation time increases dramatically as the window size of the 

template gets larger. 

 

Correlation-based methods have been used extensively for many applications such 

as object recognition (Ooi and Rao, 1991), face detection (Brunelli and Poggio, 1993), 

motion analysis (Giachetti, 2000) and industrial inspections of printed-circuit boards 

(Kim et al., 1996), surface-mounted devices (Gallegos, et al., 1996), wafers (Cai, et 

al., 1994), printed characters (Penz, et al., 2001), fabrics (Yazdi and King, 1998), 

ceramic tiles (Costa and Petrou, 2000), etc.  The traditional normalized correlation 

operation does not meet speed requirements for industry applications.  In this paper, 

we present a fast normalized cross correlation for defect detection. 

 

In object recognition or pattern matching applications, one finds an instance of a 

small reference template in a large scene image by sliding the template window in a 

pixel-by-pixel basis, and computing the normalized correlation between them.  The 
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maximum values or peaks of the computed correlation values indicate the matches 

between a template and subimages in the scene.  The normalized cross correlation 

used for finding matches of a reference template ),( jit  of size nm ×  in a scene 

image ),( yxf  of size NM ×  is defined as  
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The template size nm ×  is smaller than the scene image size NM × . 

 

 Pixel-by-pixel template matching is very time-consuming.  For a scene image 

of size NM × , and the template of size nm × , the computational complexity is 

)( NMnmO ⋅⋅⋅ .  In order to alleviate the drawback of long processing time in 

template matching, the coarse-to-fine and multi-resolution search approaches (Gross 

and Rosenfeld, 1987; Crowley and Sanderson, 1987; Penz et al., 1999; Bonmassar 

and Schwartz, 1998) have been widely used to reduce computation burden.  Such 

algorithms first scan the image quickly and find all promising areas in the rough 

resolution, and then search for more accurate patterns and locations in the fine 

resolution. 

 An alternative strategy to reduce the computational load of the normalized cross 
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correlation is to reduce data dimensionality by converting the 2D image into a 1D 

representation.  Gallegos et al. (1996) generated a linear projection of the image 

along the major axis of the object under detection so that the 2D correlation can be 

converted into a 1D correlation.  Tsai and Tsai (2002) used ring projection to reduce 

image dimensionality.  The ring projection representation converts the 2D image in a 

circular window into a 1D gray-level signal as a function of radius.  The feature of 

each ring with a specific radius is given by the average gray value of pixels on the 

ring.  1D representation can significantly reduce computational complexity.  

However, reduction in image dimensionality also reduces spatial information between 

pixels in the 2D image, and may result in false detection. 

 

 Lewis (1995) presented an algorithm for fast calculation of the normalized 

correlation using two sum tables over the image function f  and image energy 2f .  

The sum tables are pre-computed integrals of f  and 2f  over the search image.  

For a window of size nm × , it can efficiently reduce the arithmetic operations from 

nm ⋅  to only three addition/subtraction operations once the sum tables are established.  

Lewis’ sum-table approach can be used to efficiently calculate the denominator 

(image variances) of eq. (1). However, it cannot be directly applied to compute the 

cross correlation between images f  and t , as the one shown in the numerator of eq. 

(1).  The computational inefficiency of the NCC remains.  Briechle and Hanebeck 

(2001) further presented a sum table-based algorithm for fast calculation of the NCC, 

and applied it to the problem of object recognition.  The computation of the 

numerator in eq. (1), i.e., the cross correlation between images f  and t , is 

simplified by the weighted sum of rectangular basis functions, i.e., 
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where iR  defines the rectangular area of basis function i .  This allows the sum 

table to be applied to the scene image f .  The estimation of the coefficients ik  for 

the K  basis functions is a non-trivial problem, and the result is only an 

approximation of the cross correlation.  This approach is not practical for defect 

detection application since one may have to estimate NM ⋅  sets of coefficients ik  

given a scene image of size NM × .  

 

 In the correlation-based defect detection applications, a reference image and a 

scene image, both of sizes NM × , are compared in a pixel-by-pixel basis.  Two 

small windowed subimages of coincident pixel locations from the two respective 

compared images are used to compute the normalized cross correlation.  The 

computation process is repeated by taking each coordinates ),( yx  as the center of 

the neighborhood window so that the normalized correlation value of each pixel in the 

scene image can be evaluated.  A pixel with NCC value below some specific 

threshold is then classified as a defective point.  The location of a local defect in the 

scene image can be effectively detected in this manner.  The normalized cross 

correlation used for detecting defects between a reference image ),( yxr  and a scene 

image ),( yxf  is defined as  
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where nm ×  is the size of the neighborhood window; fµ  and rµ  are the 

gray- level averages of the windowed subimages from the scene and the reference, 

respectively.  In this paper, we show that both the denominator (variances) and 

numerator (cross variance) of the normalized correlation formulation in eq. (2) can be 

calculated with the sum-table operation for defect detection application.  The 

proposed sum-table scheme reduces the computational complexity of the traditional 

normalized cross correlation from )( NMnmO ⋅⋅⋅  to only )( NMO ⋅ , given that the 

image of size NM ×  and the neighborhood window of size nm ×  The proposed 

method is invariant to the window size, and results in significant savings of 

computation time.  This paper is organized as follows: Section 2 presents the 

sum-table scheme for NCC computation.  The computational complexity and 

computation time between the proposed method and the traditional operation are also 

evaluated.  The paper is concluded in Section 3. 

 

 

2. THE SUM-TABLE SCHEME FOR NCC COMPUTATION 

 

 

As aforementioned, the computational complexity of the traditional normalized 

cross correlation directly depends on the size of the neighborhood window.  It is a 

common practice to use a small window size for time-critical applications.  A small 

size of neighborhood window may contribute to computational efficiency, but it also 

degrades the effectiveness of defect detection. 

 

Model images defined in a small window contain only little structure, and do not 
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have enough information contents for robust detection.  For a neighborhood window 

that contains nm ×  sample pixels, the error between the sampled correlation 

coefficient δ  and its continuous version ρ  can be expressed by (Weatherburn, 

1962; Betke and Makris, 1995) 
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The evaluation of δ  relies on the window size.  False detection can be avoided if 

the neighborhood window is sufficiently large.  Figure 1(a) shows the image of a 

faultless PCB used as a reference, and Figure 1(b) is a defective PCB that involves a 

missing IC component.  Both images are 400400 ×  pixels wide.  In order to 

visualize the detection results, the resulting normalized correlation values are 

displayed as a function of intensity, where brightness is linearly proportional to the 

magnitude of the normalized correlation δ . The darker the intensity in the resulting 

image, the stronger the evidence of a defect.  Figures 1(c)-(f) show the detection 

results from window sizes of 55× , 1515× , 2020 ×  and 3535×  pixels, 

respectively.  The results reveal that an overly small window size can not generate 

reliable correlation values.  Although the defective region can be notable detected 

with a small window size, noisy points are also signified in the resulting image.  This 

may cause serious false alarm. The effect of noise is significantly reduced as the 

window size increases.  

 

 In this paper, we present a sum-table scheme that allows the calculation of the 

normalized cross correlation in eq. (2) to be invariant to the neighborhood window 

size so that the efficiency and effectiveness of the NCC for defect detection can be 
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simultaneously retained.  Given a two-dimensional discrete function ),( yxg , 

1,,2,1,0 −⋅⋅⋅= Mx  and 1,,2,1,0 −⋅⋅⋅= Ny , the sum table associated with ),( yxg  

is constructed by (Lewis, 1995) 

 

)1,1()1,(),1(),(),( −−−−+−+= yxSyxSyxSyxgyxS                                  (4) 

 

with 0),( =yxS  when either 0, <yx . 

 

 The sum of ),( yxg  over limited ranges of x  and y can then be calculated 

from the sum table, i.e., 
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Note that the original computation of the sum of ),( yxg  over the size of nm ×  

involves nm ⋅  addition operations.  It is dramatically reduced to only 3 

addition/subtraction operations, and is invariant to the window size nm ×  with the 

help of the sum table.   

 

 The normalized correlation operations in eq. (2) involve the calculations of the 

image means and image squares for both the reference ),( yxr  and the scene 

),( yxf  and the cross correlation between f  and r , i.e.,  
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and 
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Note that the image mean and image square (eqs. (9) and (10)) for the reference image 

),( yxr  can be pre-calculated off- line.  They do not cost the computation time in the 

inspection process.  Since the normalized cross correlation is applied for defect 

detection, the image mean and image square for the scene image ),( yxf , and the 

cross-correlation between f  and r  (eqs. (6)-(8)) can be efficiently calculated by 

constructing three sum tables as follows: 

 

)1,1()1,(),1(),(),( −−−−+−+= yxSyxSyxSyxfyxS µµµµ  

)1,1()1,(),1(),(),( 2 −−−−+−+= yxSyxSyxSyxfyxS σσσσ  

)1,1()1,(),1(),(),(),( −−−−+−+⋅= yxSyxSyxSyxryxfyxS cccc  

 

with ),( yxSµ , ),( yxSσ  and ),( yxSc  = 0 if either 0, <yx .  Therefore, eqs. 

(6)-(8) can be calculated from the sum tables ),( yxSµ , ),( yxSσ  and ),( yxSc , 

respectively.  That is,  



 10 

)12/,12/()12/,2/(                                        

)2/,12/()2/,2/(),(
2/

2/

2/

2/

−−−−+−−+

−+−−−++=++∑ ∑
−= −=

nymxSnymxS

nymxSnymxSjyixf
m

mi

n

nj

µµ

µµ
 

)12/,12/()12/,2/(                                          

)2/,12/()2/,2/(),(
2/

2/

2/

2/

2

−−−−+−−+

−+−−−++=++∑ ∑
−= −=

nymxSnymxS

nymxSnymxSjyixf
m

mi

n

nj

σσ

σσ  

)12/,12/()12/,2/(                                                               

)2/,12/()2/,2/(),(),(
2/

2/

2/

2/

−−−−+−−+

−+−−−++=++⋅++∑ ∑
−= −=

nymxSnymxS

nymxSnymxSjyixrjyixf

cc

cc

m

mi

n

nj

 

 For two compared images of size NM × , and a neighborhood window of size  

nm × , the required arithmetic operations between the traditional normalized 

correlation and the proposed sum-table scheme are summarized in Table 1.  It can be 

seen from Table 1 that the proposed sum-table scheme takes only NM ⋅⋅18  

addition/subtraction and NM ⋅⋅2  multiplication operations, whereas the traditional 

normalized correlation involves NMnm ⋅⋅⋅⋅3 addition and NMnm ⋅⋅⋅⋅2  

multiplication operations.  The overall improvements of the proposed method over 

the traditional normalized correlation are 6/nm ⋅  in addition/subtraction and nm ⋅  

in multiplication.  The computational complexity can be significantly reduced from 

)( NMnmO ⋅⋅⋅  to only )( NMO ⋅ , i.e., the computation of NCC is invariant to the 

window size nm × .  This allows a user to select a sufficiently large neighborhood 

window for obtaining the best detection effectiveness, while maintaining the 

computational efficiency. 

 

 Given a scene image  of size 400400×  pixels, the computation times from the 

proposed sum-table scheme and the traditional NCC operation on a personal computer 

with a Pentium III-1000MHz processor are presented in Table 2.  The results reveal 

that the computation time of the traditional method is dramatically increased as the 
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window size gets larger.  However, the computation time of the proposed method is a 

constant, regardless of the changes in window size. 

 

 

3. CONCLUSION 

 

 

 The traditional normalized cross correlation is one of the most effective and 

commonly used similarity metrics in computer vision.  However, it does not meet 

speed requirements for time-critical applications.  In this paper, we have proposed a 

fast normalized cross correlation based on the  sum-table scheme for the application in 

defect detection.  The use of the sum tables for the calculations of image mean, 

image variance and cross correlation introduces substantial computation savings.  

The computational complexity can be dramatically reduced from )( NMnmO ⋅⋅⋅  

with the traditional normalized correlation operation to only )( NMO ⋅  with the 

proposed sum-table scheme, given that the scene image of size NM × , and the 

neighborhood window of nm × .  Since the proposed method is invariant to the 

window size, a user can select a proper window size to maximize the detection 

effectiveness for the object under inspection without trading off the computational 

efficiency.  The proposed sum-table scheme makes the normalized cross correlation 

applicable for on-line defect detection applications. 
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(a) (b) 
  

  
(c) 55×  (d) 1515×  

  

  
(e) 2020 ×  (f) 3535×  

 
Figure 1. The effect of changes in window size: (a) the reference image; (b) the scene 

image involving a missing IC component; (c)-(f) detection results from 
window sizes of 55× , 1515× , 2020× and 3535×  pixels, respectively. 
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Table 1. The comparison of arithmetic operations between the proposed sum-table 
scheme and the traditional normalized correlation. 

 
The proposed method The traditional method Image size  : NM ×   

Window size : nm ×  Addition/ 
subtraction Multiplication Addition/ 

subtraction Multiplication 

µS  NM ××3  0  0  0  

σS  NM ××3  NM ×  0  0  
Construction 

of 
sum-tables 

cS  NM ××3  NM ×  0  0  

∑∑  NM ××3  0  NMnm ×××  0  

∑∑ 2f  NM ××3  0  NMnm ×××  NMnm ×××  
Calculation 

of  
NCC ∑∑ ⋅ rf  NM ××3  0  NMnm ×××  NMnm ×××  

Total NM ××18 NM ××2  NMnm ××××3  NMnm ××××2  
 
Table 2. The comparison of computation times (based on a personal computer with a 

Pentium III 1000 MHz process).  
 

Image size : 400400×  The proposed method 
(seconds 

Window size : Construction 
of um-tables 

Calculation 
of NCC 

Total 

The traditional method 
(seconds 

1515×  0.16 0.44 0.60 64.47 
2525×  0.16 0.44 0.60 151.58 
3535×  0.16 0.44 0.60 267.82 

 


