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Abstract 

 

 In this paper we present a new measure for corner detection based on the 

eigenvalues of the covariance matrix of boundary points over a small region of 

support. It avoids false alarms for superfluous corners on circular arcs. Experimental 

results have shown that the proposed corner detection methods using curvature 

measures. It has good detection and localization for curved objects in different 

rotations and with varying scale changes. 
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1. Introduction 

 

Corner detection in digital images has been shown to be extremely useful in 

many computer vision applications. Since information about a shape is concentrated 

at the corners, they prove to be practical descriptive primitives in shape representation, 

objection recognition (Han and Jang, 1990) and motion analysis (Costabile el al., 

1985). 

 

 Corner detection techniques can be classified into two major categories: 

boundary-based approaches and gray- level approaches. Boundary-based approaches 

detect corners on the boundaries of objects. Gray- level approaches directly work on 

gray- level images by matching corner templates (Mehrotra and Nichani, 1990) or by 

computing gradients at edge points (Singh and Shneier, 1990; Rosin, 1996). The 

proposed method in this paper is a boundary-based approach. 

 

 Corners on a curve arise where two relatively straight- line segments intersect. 

The detection procedure for corners on object boundaries involves, first, segmenting a 

scene image into meaningful regions, and then extracting boundaries from the regions 

of interest. Corners on the extracted boundaries are typically identified for those 

points with high curvature. Methods of discrete curvature measures are based on the 

rate of change of tangent direction. The tangent angle is generally measured by 

calculating the first difference of direction change over a small curve segment, and the 

curvature measurement is based on the second order difference that calculates the 

change of tangential direction over the curve segment. 

 

 Many discrete algorithms have been developed to compute the curvature of 
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boundary points lying on a digital curve (Worring and Smeulders, 1993; Fairney and 

Fairney, 1994; Tsai and Chen, 1994). Tsai (1997) measures the curvature by using 

neural networks to recognize the included angles at boundary points. Sohn et al. (1998) 

propose a method of boundary smoothing for curvature estimation using a 

deterministic approximation of simulated annealing. A variety of curvature 

measurement methods have also been reported by Teh and Chin (1989). The existing 

curvature-based corner detection methods (Beus and Tiu, 1987; Anderson and Bezdek, 

1984; Liu and Srinath, 1990) generally work reliably for polygonal objects since the 

vertices of polygons have large curvature values and the points elsewhere on the 

boundary have approximately zero curvature. However, they may detect many 

spurious corners for the objects involving circular arcs of varying radii. Points on the 

circular arc of a small radius generally have high curvature, and may have curvature 

values large than the intersection point of two stright-line segments in the discrete 

domain. Two or more superfluous corners detected on a digital circular arc is not 

uncommon using the curvature measures. The detection and localization become poor 

and unstable when the objects of curved shapes can be changed in scales and rotated 

in arbitrary orientations. 

 

 Instead of using the curvature measures for corner detection, in this paper we 

propose a new corner detection method based on the eigenvalues of the covariance 

matrix of data points on a curve segment. The goal of the proposed corner detector is 

to possess robust detection for object shapes containing various curved and circular 

arcs.  

 

This paper is organized as follows. Section 2 introduces the covariance matrix of a 

curve segment, and then discusses the use of the eigenvalue of the matrix as a 
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quantitative measure of corners. Section 3 presents the experimental results. The 

conclusion is reached in section 4. 

 

2. Covariance matrices and their eigenvalues 

 

In this paper, the measure for the prominence of a corner is derived from the 

statistical and geometric properties associated with the eigenvalues of the covariance 

matrix of data points on a digital boundary over a region of support. 

 

 Let the sequence of n digital points describe the boundary Ρ  of an object, 

 

{ }niyxp iii ,, 2 , 1 ),,( L===Ρ  

 

where 1+ip  is a neighbor of ip (modulo n ), and ( ii yx  , ) are the Cartesian 

coordinates of ip  in the image. Denote ( )ik pS  as a small curve segment of Ρ , 

which is defined by the region of support between points kip −  and kip +  for some 

integer k , i.e. 
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 The covariance matrix C  of a curve segment ( )ik pS  is given by 
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xc and yc are the geometrical center of the curve segment ( )ik pS , i.e. 
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The covariance matrix is 22 × , symmetric and positive semidefinite. There are two 

eigenvalues Lλ  and Sλ  for the matrix C , which are 
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 The eigenvalues of the matrix C  can be used to extract the shape information 

about a curve. It can be shown that when the shape S  is a stright- line segment, the 

smaller eigenvalue Sλ  for the line segment in the continuous domain will be zero, 

regardless of the length and orientation of the line segment. If the shape S  is an 

ellipse, then SL λλ >  and Lλ and Sλ are the semimajor and semiminor axial 

lengths of the ellipse. The two eigenvalues will be equal if the shape S  is a full 
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circle. Therefore, the smaller eigenvalue Sλ  of the covariance matrix C  can be 

utilized to measure the prominence of a corner for each boundary point ip  over the 

curve segment ( )ik pS . A point ip  is said to be a corner if its Sλ  value exceeds a 

predetermined threshold, and individual corners are separated by a spacing of at least 

k  points. Points on a straight- line or on a flat curve segment will result in small Sλ  

values approximate to zero, whereas points on sharp corners will generate large Sλ  

values. To verify the usefulness of the eigenvalue Sλ  for corner detection in discrete 

images, the following three analytic curves are analyzed: 

 

1) A straight-line ( ) xy  tan 1θ−= , where θ is the slope angle of the line. 

 

2) A circle 222 ryx =+ , where r is the radius of the circle. 

 

3) An angle defined by two intersecting lines  
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 where φ is the included angle of the two intersecting lines. 

 

 The three analytic curves as shown in Figure 1 are generated in an image of size 

480512×  pixels. The digital curves are created such that 

 

{ } iyyxx iiii   , 1  ,  max 11 ∀=−− −−  

 

where ( )ii yx  ,  are generated from the analytic equations and truncated to their 
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nearest integers. They represent the grid coordinates of the discrete image. 

 

 Tables ( )a 1 , ( )b 1  and ( )c 1  summarize the eigenvalues Sλ  for the three 

analytic curves under varying parameter setups. Two different regions of support 

10=k  and 15=k , which correspond to 21 and 31 data points, respectively, for each 

curve segment , are examined in the experiments. Note that the eigenvalues Lλ  and 

Sλ  are associated with the major and minor axial lengths of the ellipse, the size of 

region of support (i.e., the number of data points used to construct the covariance 

matrix) will affect the eigenvalues of a given boundary. It can be seen from Table 

( )a 1  that the values of Sλ  are approximate to zero (less than 510− ) regardless of 

the line orientations and lengths. Typically, one selects the region of support k  in the 

rang between 5 and 15. The region of support for the computation of the covariance 

matrix at each boundary point can also be adaptively selected. Teh and Chin (1989) 

have proposed an effective approach for determining the region of support at each 

individual boundary point based on local properties of the point. 

 

 The measure of curvature is equivalent to the reciprocal of the radius of an arc. 

Therefore, a smaller circle will result in larger curvature. The trend is also consistently 

revealed in Table ( )b 1 . It shows that the increment of the radius yields the decrement 

of the Sλ  value. All Sλ  eigenvalues of circular arcs are relatively larger than those 

of straight-line segments. It can also be observed from Table ( )c 1  that a sharper 

angle (smaller included angle) results in larger Sλ  value. The Sλ  values of sharp 

angles are significantly larger than those found on circular arcs. This huge gap of Sλ  

values between sharp angles and circular arcs helps to eliminate the false detection of 

superfluous corners on circular arcs. In summary, a sharp angle has larger Sλ  value 

than the points on circular arcs. A point on the circular arc has larger Sλ  value than 
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the points lying on straight lines. A point on the straight line has a Sλ  value 

approximate to zero. The sharper the angle or the smaller the radius of a circular arc is 

given, the larger the Sλ  value will be produced. Therefore, the eigenvalue Sλ  is a 

robust measure for corner detection. 

 

3. Experimental results 

 

 In this section we present the experimental results to evaluate the performance of 

the proposed corner detector for artificial curved objects and real objects. All 

algorithms are programmed in C and executed on a personal computer. The image 

size is 512×480 in pixels. Based on the study of Liu and Srinath (1990), the 

Freeman-Davis-based algorithms (Freeman and Davis, 1977; Beus and Tiu, 1987) 

outperform other boundary-based corner detection schemes. Therefore, the 

performance of the proposed corner detector is compared with that of the 

Freeman-Davis method (Freeman and Davis, 1977). In the Freeman-Davis method, a 

corner is defined as an isolated discontinuity (local curvature) in the mean slope, its 

prominence being proportional to the length of the discontinuity-free regions to either 

side of the point as well as the measured magnitude of the discontinuity. 

 

 The thresholds for both the proposed corner detector and the Freeman-Davis 

method are selected, individually, so that the number of spurious corners are 

minimized while all desired corners specified by a human viewer are detected. The 

number of spurious corners, therefore, gives the performance criterion.  

  

 Let { }m21 c,,c,cC L=  be a set of m desired corners specified by a human 
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viewer, and Sλ ( ic ) the measured Sλ  value at corner ic . The threshold sTλ is 

selected such that  

sTλ = ( ){ } m,1,2,i , c  min is L=λ  

The region of support k  for calculating the covariance matrix is 10 throughout all 

experiments for both methods so that their performances can be compared in the same 

basis. 

 

 Three curved objects with their desired corners specified by a human viewer are 

shown in Figures 2(a), 2(b) and 2(c). These three curved objects have been tested 

under three different scales 50%, 75% and 100% in terms of area changes, and objects 

of scale 100% are rotated in two additional orientations of 030 and 060 so that the 

effects of scale and orientation on detected corners can be analyzed.  Figures 3, 4 and 

5 show the detection results of the Freeman-Davis method (figures in the left column). 

Every detected corner in the figures is marked by a cross “＋” for the proposed 

method, and by a circle “○” for the Freeman-Davis method. Table 2 presents the 

number of spurious corners detected by the two methods for the three curved objects 

in different scales and orientations. It reveals that the Freeman-Davis method detects a 

few spurious corners on arc segments, whereas the proposed method identifies all 

desired corners without any false alarm. The proposed corner detector is robust and 

reliable for curved objects under varying scales and orientations. 

 

 In terms of localization, the distance (in pixels) between a detected corner point 

and its corresponding true corner for the three curved objects under three scaling 

factors 50%, 75% and 100% and two rotational angles 030 and 060 is within 1 pixel 

using the proposed corner detector. 
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 Three real objects are also used in experiments to demonstrate the performance 

of the proposed Sλ  measure. Figure 6(a) presents a natural leaf. The backlighting 

technique is used to obtain the silhouette of the leaf, as shown in Figure 6(b). The 

corner detection result is shown in Figure 6(c). Figure 7(a) presents the silhouette of a 

gear with 20 teeth. Figure 7(b) shows that the corners of each tooth are reliably 

detected in all directions. Figures 8(a) and 8(b) show the profile of a Mackerel shark 

(Saund, 1992) and the corner detection result, respectively. Figure 8(c) illustrates a 

distorted version of the shark. Figure 8(d) shows that all desired corners as indicated 

in Figure 8(b) are also reliably detected from the noisy boundary of the shark. 

 

Finally, the proposed method is also compared with a novel scale-space corner 

detection scheme developed by Rattarangsi and Chin (1992). The technique is based 

on a Gaussian scale-space, which consists of the maxima of absolute curvature of the 

boundary function presented at all scales. Figure 9(a) shows a key-shape example 

used in their study. From the detection results we find that four spurious corners on 

the circular arc are detected using the scale-space corner detection method (Figure 

9(b)), and none of the boundary points on the arc are selected as corner points using 

the proposed method (Figure 9(c)). 

 

4. Conclusions  

 

 Instead of using the conventional curvature measures that evaluate the tangent 

change along the object boundary for corner detection, in this paper we have 

presented a new quantitative measure of corners based on the smaller eigenvalue of 

the covariance matrix of boundary points over a small region of support. The 
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eigenvalue associated with the minor axis increases its magnitude as a point on the 

curve segment increases its curvature. It has better discrimination between true 

corners and spurious corner points on circular arcs. 

 

 The proposed corner detector is computationally fast and easy to implement. 

More importantly, it avoids false ala rms for superfluous corners on circular arcs. The 

experiments aforementioned have shown that the proposed corner detector compares 

flavorably with the Freeman-Davis method. It has generated good detection and 

localization for curved objects under different rotation and scale changes. 
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Table 1. The eigenvalues Sλ  for three analytic curves under different parameter 

values and regions of support. 

 
(a) A line θ1tan −=y  

Region of support Slope angle θ 
21 data points 31 data points 

00  -1.907E-06  7.529-E-06 
020  3.814E-06        -9.536E-05 
040  -7.629E-06 3.433E-05 
060  3.814E-06 3.814E-05 
080  -2.670E-05 3.051E-05 

 
(b) A circle 222 ryx =+  

Region of support Radius r (pixels) 
21 data points 31 data points 

30 0.256 1.397 
50 0.090 0.465 
70 0.043 0.233 
90 0.024 0.141 

 

(c) An angle x )
2

90(tan 01





 −= − ϕ

y  

Region of support Included angle ϕ  
21 data points 31 data points 

030  6.969 15.756 
050  5.952 13.448 
070  4.845 10.940 
090  3.673           8.291 

 

 

Table 2. The number of spurious corners detected by the Freeman-Davis method and 

the propoosed method. 
 

Object Test object 1 
(Figure 3) 

Test object 2 
(Figure 4) 

Test object 3 
(Figure 5) 

Method Freeman-Davis Proposed Freeman-Davis Proposed Freeman-Davis Proposed 

50% 2 0 8 0 5 0 
75% 2 0 12 0 4 0 Scale 
100% 2 0 7 0 8 0 

030  4 0 3 0 4 0 
Rotation 

060  1 0 4 0 4 0 
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(a) Test object 1 
 

 

(b) Test object 2 
 

 
(c) Test object 3 

 

Figure 2. Three real curved objects with their desired corners marked by〝+〞. 
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(a) Scaling factor 50% 

                     

(b) Scaling factor 75% 

                     

(c) Scaling factor 100% 

                     

(d) Rotational angle 030  
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(d) Rotational angle 060  

 

Figure 3. Detected corners of test object 1 for the Freeman-Davis method (left column)         

and the proposed method (right column). 
 

                     

(a) Scaling factor 50% 

                     

(b) Scaling factor 75% 

                     

(c) Scaling factor 100% 

                     

(d) Rotational angle 030  
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(d) Rotational angle 060  
 

Figure 4. Detected corners of test object 2 for the Freeman-Davis method (left column)          

and the proposed method (right column). 
 

                           

(a) Scaling factor 50% 

                     

(b) Scaling factor 75% 

                     

(c) Scaling factor 100% 
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(d) Rotational angle 030  

                     

(d) Rotational angle 060  
 

Figure 5. Detected corners of test object 3 for the Freeman-Davis method (left column)         

and the proposed method (right column). 
 


