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A quantile-quantile plot based pattern matching  

for defect inspection 

ABSTRACT 

Pattern matching has been used extensively for many machine vision 

applications such as optical character recognition, face detection, object detection, and 

defect detection.  The normalized cross correlation (NCC) is the most commonly 

used technique in pattern matching.  However, it is computationally intensive, 

sensitive to environmental changes such as lighting and shifting, and suffers from 

false alarms for a complicated image that contains partial uniform regions.  In this 

paper, a pattern matching scheme based on the quantile-quantile plot (Q-Q plot) is 

proposed for defect detection applications.  In a Q-Q plot, the quantiles of an 

inspection image are plotted against the corresponding quantiles of the template 

image.  The p-value of Chi-square test from the resulting Q-Q plot is then used as 

the quantitative measure of similarity between two compared images.  The quantile 

representation transforms the 2D gray-level information into the 1D quantile one.  It 

can therefore efficiently reduce the dimensionality of the data, and accelerate the 

computation.  Experimental results have shown that the proposed pattern matching 

scheme is computationally fast and is tolerable to minor displacement and process 

variation.  The proposed similarity measure of p-value has excellent discrimination 

capability to detect subtle defects, compared with the traditional measure of NCC.  

With a proper normalization of the Q-Q plot, the p-value measure can be tolerable to 

moderate light changes.  Experimental results from assembled PCB (printed circuit 

board) samples, IC wafers, and LCD (liquid crystal display) panels have shown the 

efficacy of the proposed pattern matching scheme for defect detection. 

Keywords: Defect detection; Pattern matching; Quantile-quantile plot; Similarity 

measure 
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1. INTRODUCTION 

Template matching has been a commonly used technique for object detection (Ooi 

and Rao, 1991; Ratan et al., 2000; Tsai and Tsai, 2002), Face detection (Brunelli and 

Poggio, 1993; Grudin, 2000), and industrial inspections of printed circuit boards (Kim 

et al., 1996), surface-mounted devices (Gallegos et al., 1996), wafers (Cai et al., 

1994), printed-character quality (Chang et al., 2001), fabrics (Yazdi and King, 1998) 

and ceramic tiles (Costa and Petrou, 2000).  In object detection applications, it finds 

a pattern in the scene image by sliding the window of a reference template in a 

pixel-by-pixel basis, and computing the degree of similarity between image window 

and reference template.  The peak of the measured similarity values indicates an 

instance of the template in the scene image.  In defect inspection applications, the 

similarity measure between two windowed subimages at coincident locations in their 

respective inspection image and faultless template image is calculated, and the 

process is repeated for all pixels in the whole image.  A small similarity value below 

some predetermined threshold indicates the presence of a defect.   

The measure of similarity in template matching is commonly given by the 

normalized cross correlation (NCC).  The traditional NCC that directly works on 2D 

gray-level images does not meet speed requirements for industrial applications.  

Furthermore, it is not highly responsive to the changes of two compared images and, 

therefore, cannot effectively discriminate the difference between faultless and 

defective regions in an inspection image.  In order to alleviate the drawback of long 

processing time in template matching, the coarse-to-fine and multi-resolution search 

approaches (Gross and Rosenfeld, 1987; Penz et al., 1999; Bonmassar and Schwartz, 
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1998; Tsai and Chiang, 2002) have been widely used to reduce computational burden.  

Such algorithms first scan the image quickly and find all promising areas in the rough 

resolution, and then search for more accurate patterns and locations in the fine 

resolution.  Lewis (2003) presented an algorithm that improves the calculation of the 

NCC for object detection by using precomputed sum tables.  Tsai and Lin (2003) 

further extended Lewis’ sum table approach for defect detection.  Tsai et al. (2003) 

evaluated the use of the NCC for defect detection in complicated images.  They 

pointed out that the NCC in gray-level images may result in false alarms for two 

compared images that contain uniform patterns.  The detectability of NCCs in 

monochrome and color images, and the effect of image smoothing were empirically 

evaluated.  They reported that the NCC in a smoothed color image can alleviate false 

alarms in defect detection applications.  However, the discrimination ability for 

subtle defects remains a problem of NCC-based methods. 

Our work has been motivated by a need to develop an efficient and effective 

similarity measure that can be significantly responsive to the degree of difference 

between two compared images.  In this paper, a pattern matching scheme based on 

the quantile-quantile plot (Q-Q plot) is proposed for defect detection applications.  In 

a Q-Q plot, the quantiles of the inspection image are plotted against the corresponding 

quantiles of the template image.  If both compared images are identical, each pair of 

corresponding quantiles would plot on a straight line with slope 1 through the origin.  

The p-value of Chi-square test from the resulting Q-Q plot is then used as the 

quantitative measure of similarity between the two compared images.  The quantile 

representation transforms the 2D gray-level information into the 1D quantile one.  It 

can therefore efficiently reduce the dimensionality of the data, and accelerate the 

computation.  The proposed similarity measure of p-value has excellent 



 3

discrimination capability to detect subtle defects, compared with the traditional 

measure of NCC.  With a proper normalization of the Q-Q plot, the p-value measure 

can be tolerable to moderate light changes.  The proposed pattern matching scheme 

is computationally fast and is insensitive to minor displacement and process variation. 

This paper is organized as follows: Section 2 first describes the construction of a 

quantile-quantile plot, and interprets the shapes of gray-level distributions of various 

image contents in the plot.  Then the p-value used as a quantitative measure of 

similarity between two compared images in the Q-Q plot is presented.  Section 3 

discusses the experimental results from test samples of assembled PCBs (printed 

circuit boards), IC wafers and LCD (liquid crystal display) panels. The paper is 

concluded in Section 4. 

2. DEFECT DETECTION USING Q-Q PLOTS 

2.1 The Q-Q plot 

 The quantile-quantile plot is traditionally a graphical technique for determining if 

two data sets come from populations with a common distribution in the context of 

statistics (NIST/SEMA TECH, 2004).  Let )(xF  be the cumulative distribution that 

the continuous random variable X  will have taken on a value no larger than the 

number x , i.e., 

)(xF = )( xXP ≤                            (1) 
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The q-quantile of )(xF  is that number qx  such that qxF q =)( .  If 1−F  denotes 

the inverse of )(xF , then )(1 qFxq

−= .  For a continuous data set, the cumulative 

density function )(xF  is continuous and strictly increasing so that )(1 qF −  is 

uniquely defined. If two compared data sets come from a population with the same 

distribution, the points of paired quantiles will fall on a straight line with slope 1 

through the origin in the plot.  With the aid of Q-Q plots, we can then assess the 

similarity between two compared images.  In gray-level images, the Q-Q plot is a 

graph of the iq -quantile of the gray-level distribution )(xFT  of the template image 

T, namely, 

)(1

iT

T

q qFx
i

−=                             (2) 

versus the iq -quantile of the gray-level distribution )(xFI  of the inspection image I,

namely 

)(1

iI

I

q qFx
i

−=                              (3) 

For each quantile level iq , a point of paired quantiles with coordinates (
I

qi
x , T

qi
x ) is 

generated in the Q-Q plot.  If both images are exactly the same, each pair of 

corresponding quantiles will follow an upward linear trend, with unit slope through 

the origin.  There will be departures from the 45  reference line for two dissimilar 

images.  The greater the departure from this reference line (or the greater the 

non-linearity of the resulting graph) in the plot, the greater the evidence of 

heterogeneity. 

 The Q-Q plot of two digital images can be constructed as follows.  Let nm×
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be the selected window size for comparison, and [0, maxL ] the range of gray levels.  

The probability of a gray level l  in the window is given by  

nm

lh
lPr ⋅

= )(
)(   ,  =l 0,1,2,…, maxL                     (4) 

where )(lh  is the gray-level histogram in the window.   

To produce a Q-Q plot in a traditional procedure, one needs first to sort the 

observed data points into ascending order so that the corresponding q-quantile 

variable qx  can be determined for each quantile level q .  The sorting procedure is 

computationally intensive.  Fortunately, the integer variables of gray levels sl′  in a 

digital image are inherently arranged in increasing order.  The discrete cumulative 

distribution function )(ˆ lF  can then be easily calculated by 

=
=

l

i

r iPlF
0

)()(ˆ , =l 0, 1, 2,…, maxL (5)

Given a percentage step q∆ , we can construct K  points of paired quantiles in the 

Q-Q plot, where 

∆
=

q
K

1
                                   

Hence, the quantile level kq  is given by 

qkqk ∆⋅= , =k 1,2,…., K
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For each quantile level kq , the associated gray level variable kl  can be derived from  

=

==
kl

i

krk qiPlF
1

)()(ˆ                                  (6) 

Since the gray level probability function )(iPr  is discrete, the resultant gray-level 

variable can be determined by 

=kl arg min{ })1(ˆ,)(ˆ −−− kkkk lFqqlF                  (7)

where kk qlF ≥)(ˆ  and kk qlF <− )1(ˆ .

 Let T

kl  and I

kl  be the kq -quantiles of the template image and the inspection 

image, respectively, =k 1,2,…, K .  Therefore, we can generate K  points of paired 

quantiles, each of coordinates ( ), T

k

I

k ll , in the Q-Q plot.  In this study, the 

percentage step q∆  is fixed to be 0.05.  A total of 20 points will be generated in the 

Q-Q plot.  The quantile representation transforms the 2D gray-level image into the 

1D quantile signal.  For a window image of arbitrary size nm× , the number of data 

points can be reduced from nm ⋅  to only 20 with a percentage step of 0.05. 

 In order to illustrate how Q-Q plots help assess the similarity (or lack thereof) 

between two compared images, Figures 1-4 demonstrate four test images and their 

corresponding graphs of Q-Q plots.  Figures 1(a) and (b) show two uniform images 

for comparison.  Figure 1(c) presents the resulting Q-Q plot, in which the points of 

paired quantiles are highly concentrated on the 45  reference line.  Figures 2(a) and 

(b) present two heterogeneous images, and Figure 2(c) show the corresponding Q-Q 

plot.  An S-shaped curve indicates lack of similarity between these two compared 
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images.  Figures 3(a) and (b) illustrate two identical printed character images.  The 

resulting Q-Q plot, as seen in Figure 3(c), shows that the pairs of quantiles lie very 

nearly along the 45  reference line.  It suggests a strong similarity between these 

two samples.  Figure 4(b) further demonstrates a defective version of the printed 

character image in Figure 3(a).  The Q-Q plot of Figures 4(a) vs. 4(b) appears rather 

curve-shaped, and visibly indicates lack of similarity. 

 Q-Q plots are qualitative rather quantitative methods for the comparison of two 

data sets.  In this study, the straightness of a Q-Q plot along the 45  reference line, 

i.e., the similarity measure between two compared images, are evaluated by 

calculating the p-value of Chi-square test and the correlation coefficient of the paired 

quantiles in the plot.  

2.2 The similarity measures in Q-Q plots 

 When two compared images are resembled, their Q-Q plot follows an upward 

linear trend.  The straightness of the Q-Q plot is measured either by the correlation 

coefficient or by the p-value of Chi-square test in the plot, which are defined as 

follows. 

The correlation coefficient

 The correlation coefficient for the Q-Q plot with data points ( ){ }K

k

T

k

I

k ll
1

, =  is 

given by  

( )( )

( ) ( ) 2
1

1 1

22

1

−⋅−

−−
=

= =

=

K

k

K

k

II

k

TT

k

K

k

II

k

TT

k

Q

llll

llll

r                    (8) 
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where Tl  and Il  are the means of slT

k '  and sl I

k ' , respectively.  For two identical 

images in comparison, the resultant correlation coefficient Qr  for the Q-Q plot has a 

maximum value of unity.  The value of Qr  is in the range between -1 and 1.  In 

this study, we take only non-negative values of Qr , i.e., Qr = max { 0 , Qr }, since a 

negative value of Qr  indicates a poor match or a reversal of intensities between two 

compared images in the application of defect inspection. 

The p-value

 The p-value is often referred to as the observed level of significance to 

hypothesis test in statistics, which is the smallest level at which the null hypothesis 

can be rejected for a given set of data (Levine et al., 2001).  A large p-value 

approximate to unity indicates a strong similarity, whereas a small p-value close to 

zero suggests a strong heterogeneity between two compared samples.  The p-value of 

Chi-square test for linear trend in a Q-Q plot is obtained by first calculating the 

Chi-square statistic for the two quantile data sets { }K

k

T

kl 1=  and { }K

k

I

kl 1= . Since the 

data may not be normally distributed, the Chi-square statistic is calculated by 

( )
=

−=
K

k

T

k

T

k

I

k lll
1

22χ                             (9)

Then the p-value of the Chi-square distribution is given by 

p  = dxex x

)2/(

2 2/1)2/(
2/

2

−−
∞ −

Γ
υ

χ

υ

υ
                    (10) 

where υ is the degree of freedom, and 1−= Kυ ;

        

)2/(υΓ is the Gamma function given by  
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dtet t

∞
−−=Γ

0

1)2/()2/( υυ                           (11) 

The digital computation of the p-value can be found in the reference (UCLA, 2003). 

 Table 1 summarizes the resulting correlation coefficients Qr  and p-values for 

the four test images in Figures 1-4.  It appears from the table that the p-values yield 

high values approximate to unity for resembled images, either uniform or complicated 

images, and low values close to zero for dissimilar images.  The correlation 

coefficient Qr  cannot generate discriminating values for dissimilar images such as 

the ones shown in Figures 2 and 4.  To further compare the detection effectiveness of 

the similarity measures of Q-Q plots and the traditional pattern matching, Table 1 also 

lists the NCC values for the four test samples in their original 2D gray-level images.  

Figures 1 and 4 reveal that NCCs cannot reliably discriminate the difference between 

faultless and defective images.  These results suggest that the p-value of Q-Q plots 

should be used as the similarity measure for template-based defect detection. 

 In order to reduce the effect of shifting due to minor misalignment or process 

variation in manufacturing, only the gray levels of edge pixels in the compared 

images are used for the construction of Q-Q plots.  In this study, the edge pixels are 

defined by those that have Sobel gradients larger than the mean gradient of the image.  

Since the proposed template matching scheme is based on quantiles, the extracted 

numbers of edge pixels in the template and inspection images need not be equal. 

 As mentioned in previous experiments, the p-value is highly responsive to subtle 

defects in an inspection image, and is an excellent similarity measure for defect 

detection in terms of the discrimination capability.  However, the drawback of the 
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p-value measure is its sensitivity to lighting.  An illumination change will cause the 

resulting Q-Q plot of two resembled images to deviate from the 45  reference line, 

and yield a small p-value close to zero.  In order to make the p-value a practical 

similarity measure for defect detection, an affine transformation is carried out in the 

Q-Q plot to normalize the points of paired quantiles.  The normalization process 

brings the paired points in the Q-Q plot to lie on the 45  reference line for two 

resembled images, while preserving the nonlinear shape of the Q-Q plot for two 

dissimilar images. 

 Let blal IT +⋅=  be the estimated line equation for the data sets of points 

( ){ }K

k

T

k

I

k ll
1

, = .  The slope a and intercept b of the regression line can be easily 

calculated using the least-squares method.  The coordinates of a paired point ( I

kl ,
T

kl )

can then be normalized by 

−∆∆
∆−∆

=
bl

l

l

l

T

k

I

k

T

k

I

k

θθ
θθ

cossin

sincos

ˆ

ˆ

where θ∆  is the angular difference between the estimated regression line and the 

45  reference line, i.e., a1tan
4

−−=∆ πθ .

 Figures 5 and 6 illustrate faultless and defective images, respectively, under 

overexposure and underexposure conditions.  For the faultless image in Figure 5, the 

resulting graphs in the Q-Q plots are approximately linear, but depart from the 

45 reference line for the overexposed and underexposed images.  The normalized 

points in the Q-Q plots lie fairly well on the 45 reference line, and result in high 
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p-values of 0.99, as seen in Table 2.  For the defective images in Figure 6, the 

normalized graphs in the Q-Q plots remain curve-shaped, and the resulting p-values 

are as small as 0.0001.  The results reveal that the p-value of the normalized Q-Q 

plots can tolerate illumination changes for faultless images, and yet well preserves 

nonlinearity of the graphs in the plots for defective images. 

3. EXPERIMENTAL RESULTS 

In this section, we present the experimental results for evaluating the efficacy of 

the proposed Q-Q plot based pattern matching scheme for defect detection.  In our 

implementations, all algorithms were programmed in the C++ language and executed 

on a personal computer with a Pentium 4, 1.9 GHz processor.  The effective image 

size is 400×400 pixels with eight-bit gray levels. 

In order to visualize the detection results of two compared images, the resultant 

p-values are represented as an intensity function by linearly scaling up to 255 in an 

8-bit display (i.e., 255⋅p ).  The brightness of each pixel is, therefore, proportional 

to the magnitude of p-value.  The darker the intensity in the resulting image, the 

stronger the evidence of a defect.   

3.1 The effect of window size 

Using the template-based matching technique for defect inspection, one has to 

calculate the similarity measure of each pixel defined in a small neighborhood 

window.  An overly small size of the window will generate much noise in the 
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detection image, whereas an overly large size of the window may smooth out subtle 

defects.  Figures 7(a) and (b) show two compared images of PCB surfaces.  The 

resulting p-values as an intensity function from window sizes 1515× , 2020× ,

3030×  and 4545×  pixels are respectively presented in Figures 7(c)-(f).  A few 

noisy points appear in the detection image with the small window size of 1515× .  A 

window size of 3030×  or larger well detects the defect without presenting noise.  

The computation times for window sizes 2020× , 3030×  and 4545×  pixels are 

0.28, 0.30 and 0.32 seconds, respectively.  They indicate that the proposed Q-Q plot 

based template matching is nearly invariant to the increased size of a neighborhood 

window.  Also notice that the detection results in Figures 7(c)-(f) visibly look like 

binary images due to the high discrimination capability of the proposed similarity 

measure of p-value (i.e., p-value is approximately unity for resembled regions, and 

zero for dissimilar regions). 

For the sake of comparison, the detection results of Figures 7(a) vs. (b) using the 

traditional NCC in 2D gray-level images are also demonstrated in Figures 8(a)-(d), in 

which only nonnegative NCC values are considered and transformed as an intensity 

function of an 8-bit display, i.e., max{0, NCC} 255⋅ .  The results show that the NCC 

method may detect defect regions along with many false-alarmed areas.  The 

discrimination capability of the traditional NCCs is not as good as the proposed 

p-value of Q-Q plots.  Computation time of the NCC method dramatically increases 

from 1.37 seconds with a small window of size 2020×  pixels, to 5.87 seconds with 

a large window of size 4545×  pixels.  In the following subsequent experiments, a 

window size of 3030×  pixels is employed for all test samples. 

In defect detection applications, the computational complexity of the 
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traditional NCC in a 2D image is O( NMnm ⋅⋅⋅ ) for an image of size M×N and a 

template window of size nm× .  The computational complexity of the proposed 

Q-Q plot scheme can be efficiently reduced to O( NMK ⋅⋅ ), where K is the number 

of paired quantiles in the Q-Q plot.  The value of K is generally very small.  For a 

percentage step of 5% (i.e., q∆ =0.05), K is only 20.  Given a template window of 

size 30 × 30, the value of nm×  is then 900.  Note that the computational 

complexity of the proposed method is relatively invariant to the template window size 

nm× .

3.2 The effect of shifting 

 In the previous section, we have suggested the use of gray levels of edge pixels 

to construct the Q-Q plot so that the noise due to the minor shifting can be alleviated.  

To further reduce the effect of shifting, which is a common problem in template-based 

defect inspection, a search procedure is carried out in a small neighborhood for those 

pixels that have a small p-value.  That is 

),( yxp = },),,({max WjiWjyixp ≤≤−++ , pTyxp <∀ ),(                   

where ),( yxp  is the p-value at pixel coordinates ),( yx ; the integer W defines the 

search neighborhood of size (2W+1)× (2W+1); and PT  is a predetermined threshold 

of p-value.  In this study, we use a small search neighborhood of 33× , i.e., the 8 

adjacent neighbors of (x, y) with W=1.  Since the p-value is generally very small for 

dissimilar images, the p-value threshold PT  is conservatively selected to be 0.3.  

Note that the search procedure is only required for the potential defect pixels with low 

p-values.  Figure 9(a) shows the template image of a test sample for evaluating the 

effect of shifting.  Figures 9(b) and (c) are a faultless version and a defective version 

(missing components marked with a dotted square) of the test sample.  These 
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inspection images were horizontally shifted to the right by three pixels.  The 

detection results of the proposed method with and without the use of the search 

procedure are illustrated in Figures 9(d)-(g).  The results reveal that the proposed 

method can tolerate minor changes of shifting.  With the aid of the search procedure, 

noisy points can be effectively eliminated without increasing much computational 

load. 

3.3 The effect of lighting and more detection results 

 To demonstrate the effect of varying illumination, Figure 10(a) shows a PCB 

template image under a normal illumination.  Figure 10(b) is a defective version of 

the PCB under the same illumination, in which two missing components are marked 

with a dotted circle.  Figures 10(c) and (d) further show underexposed and 

overexposed versions of the defect sample in Figure 10(b).  The detection results 

shown in Figures 10(e)-(g) indicate that the p-values of the normalized Q-Q plots can 

reliably detect defects for moderate variations of illumination. 

 Figures 11(a1)-(a4) show four additional test images of various PCB samples 

under the same parameter setup suggested in this study.  Figure 11(b1) presents an 

IC image with blurred printed characters, Figure 11(b2) involves a contaminated 

defect, Figure 11(b3) contains a misaligned component, and Figure 11(b4) includes a 

deformed component.  The detection results as displayed by 255⋅p  in Figures 

11(c1)-(c4) have shown the effectiveness of the proposed method for detecting subtle 

defects embedded in complicated gray-level images. 

 Figures 12(a1) and (a2) demonstrate two IC wafer images, and Figures 12(a3) 

and (a4) present two LCD panel images for further testing the generality of the 
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proposed method in template-based defect detection.  Figures 12(b1)-(b4) are the 

defective versions of the templates in Figures 12(a1)-(a4), respectively. The 

experimental results in Figures 12(c1)-(c4) show that the defect areas as displayed by 

255⋅p  are notably detected and located.  Approximately black areas associated 

with the defects and a white background for the clear region are generated in each of 

the resulting images.   

4. CONCLUSIONS 

 In this study, we have proposed a quantile-quantile plot based pattern matching 

scheme for defect detection.  In the Q-Q plot, the quantiles of an inspection image 

are plotted against the corresponding quantiles of the template image.  If both images 

are exactly the same, each pair of the corresponding quantiles will lie on a straight 

line with slope 1 through the origin.  The graph in the plot will depart from the 45

reference line or become curve-shaped for two dissimilar images.  The p-value of 

Chi-square test is adopted as a measure of straightness (i.e. similarity) for points of 

paired quantiles in the Q-Q plot.  

 With a proper affine transformation that normalizes the points of paired quantiles 

with a desired slope of 1 and intercept of 0 in the Q-Q plot, the p-value measure can 

tolerate moderate changes of illumination.  Compared with the traditional NCC 

methods, the proposed Q-Q plot based template matching scheme is computationally 

efficient.  It is nearly invariant to the size of the neighborhood window and, therefore, 

a user can select a proper window size to maximize the detection effectiveness for the 
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object under inspection without trading off the computational efficiency.  The 

proposed method provides an effective and efficient referential approach for industrial 

inspection of defects in complicated gray-level images. 

 The experimental results have shown that the proposed method can be used for a 

variety of industrial inspection applications as long as the templates are available.  

The proposed Q-Q plot based template matching scheme can also be applied for 

object recognition where an instance of a small reference template must be detected in 

a large scene image.  By sliding the template window pixel by pixel over the entire 

image, the maximum values or peaks of the resultant p-values indicate the matches 

between the template and subimages in the scene.  In this study, the Q-Q plot based 

defect detection scheme is mainly applied to gray-level images.  Since a color image 

can provide more cues for discriminating anomalies and many defects of industrial 

products may result from faulty color, the Q-Q plot that uses the tristimulus color 

values of R (red), G (green) and B (blue) for defect detection in color images is worth 

to investigate in the future.  
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(a) (b) (c) 

Figure 1. Q-Q plot for two uniform images. 

(a) (b) (c) 

Figure 2. Q-Q plot for two heterogeneous images. 

(a) (b) (c) 

Figure 3. Q-Q plot for two faultless printed-character images. 

(a) (b) (c) 

Figure 4. Q-Q plot for the faultless printed-character image and a blurred version of 

the sample. 
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(a1) (b1) (c1) (d1)

    

(a2) (b2) (c2) (d2)

    

(a3) (b3) (c3) (d3)

Figure 5. (a1)-(a3) The template image ; (b1)-(b3) Faultless test images under normal 

lighting, overexposure and underexposure conditions, respectively; 

(c1)-(c3) the corresponding Q-Q plots prior to normalization ; (d1)-(d3) the 

resulting Q-Q plots after normalization. 



(a1) (b1) (c1) (d1)

    

(a2) (b2) (c2) (d2)

    

(a3) (b3) (c3) (d3)

Figure 6. (a1)-(a3) The template image; (b1)-(b3) Defective test images under normal 

lighting, overexposure and underexposure conditions, respectively; 

(c1)-(c3) the corresponding Q-Q plots prior to normalization; (d1)-(d3) the 

resulting Q-Q plots after normalization. 



(a)  (b)

(c) (d)

(e) (f) 

Figure 7. The effect of changes in windows size: (a) the template image; (b) the 

inspection image involving a defect; (c)-(f) detection results from window 

size of 1515× , 2020× , 3030× and 4545× pixels, respectively. 



(a)  (b)

(c)  (d)

Figure 8. The effect of changes in window size for the test images in Figure 7 (a) 

and (b) using the traditional NCC: (a)-(d) detection results from window 

size of 1515× , 2020× , 3030× and 4545× pixels, respectively. 



(a) (b) (c) 

 (d) (f) 

 (e) (g) 

Figure 9. The effect of shifting: (a) the template image; (b) the faultless inspection 

image; (c) the inspection image containing missing components (as 

marked with a dotted square); (d), (e) the detection results for the 

inspection image in (b) without and with the use of the search procedure; 

(f), (g) the detection results for the inspection image in (c) without and 

with the use of the search procedure. 



(a)  

(b) (e) 

(c) (f) 

(d) (g) 

Figure 10. The effect of illumination changes: (a) the template image; (b) a defect 

image under the same illumination as (a); (c), (d) underexposed and 

overexposed versions of the defect image in (b); (e)-(g) the detection 

results of (b), (c) and (d),respectively, based on the p-value in the 

normalized Q-Q plots. 



(a1) (b1) (c1) 

(a2) (b2) (c2) 

(a3) (b3) (c3) 

(a4) (b4) (c4) 

Figure 11. Defect detection in four assembled PCBs: (a1)-(a4) The template images; 

(b1)-(b4) the inspection images that contain various defects; (c1)-(c4) the 

respective detection results of (b1)-(b4).  



(a1) (b1) (c1) 

(a2) (b2) (c2) 

(a3) (b3) (c3) 

(a4) (b4) (c4) 

Figure 12. Defect detection in IC wafers ((a1) and (a2)) and LCD panels ((a3) and 

(a4)): (a1)-(a4) The template images; (b1)-(b4) the inspection images that 

contain various defects; (c1)-(c4) the respective detection results of 

(b1)-(b4). 



Table 1. Comparison of similarity measures for the test images in Figures 1-4. 

Q-Q plot 

Test image 
p-value Qr

Traditional NCC 

Figure 1 0.99 0.99 0.72 

Figure 2 0.01 0.83 0.65 

Figure 3 0.99 0.99 0.99 

Figure 4 0.01 0.82 0.77 

Table 2. The resulting p-values with and without the normalization for the Q-Q plots 

in Figures 5 and 6. 

P-value Estimated direction(dgs.) 
Test Image 

Original Normalized Original Normalized 

Normal lighting(Fig.5(b1)) 0.9999 0.9999 45.0 45.0 

Overexposure (Fig.5(b2)) 0.0001 0.9990 36.0 44.9 

Faultless 

images 

(Fig. 5) Underexposure(Fig.5(b3)) 0.0001 0.9991 61.7 45.2 

Normal lighting(Fig.6(b1)) 0.0001 0.0001 45.1 45.1 

Overexposure (Fig.6(b2)) 0.0001 0.0001 35.3 44.5 

Defective 

images 

(Fig. 6) Underexposure (Fig.6(b3)) 0.0001 0.0001 60.3 45.9 

Table



Responses to the comments of reviewer 1: 

1.  Computational complexity of the proposed method vs. the traditional NCC 

method has been discussed on page 13 (the first paragraph) in the revised 

manuscript.  

2 & 3. Besides the PCB test samples (Figure 11), we have included two IC wafer 

images (Figures 12(a1) and (a2)), and two LCD (Liquid Crystal Display) 

panel images (Figures 12(a3) and (a4)) in the revision to show the 

performance of the proposed method in other applications.  The potential 

applications of the proposed method have also been discussed in the 

conclusion section (2
nd

 paragraph, page 16) in the revised manuscript.  

4.  The future research direction has been included in the conclusion section (2
nd

paragraph, page 16) in the revised manuscript.  

Responses to reviewer 1



Responses to the comments of reviewer 2: 

1.  Eq. (1) is a general description for any continuous data set.  Since F(x) is a 

cumulative density function for continuous random variables, it is continuous and 

strictly increasing. qxF q =)( and )(1 qFxq

−= can be uniquely defined for 

continuous data sets.  The discrete version of F(x) used for digital images in this 

study is given in eqs. (6) and (7).  The discussion above has been included on 

pages 3 and 4 (the last paragraph on page 3, and the first paragraph on page 4) in 

the revised manuscript. 

2. )(1

iT qF −
in eq. (3) has been corrected as )(1

iI qF −
.

3.  The typing mistake “pot” (page 7, the first line of section 2.2) has been corrected 

as “plot” in the revision. 

4.   -  When the correlation coefficient Qr eq. (8) is close to -1, it indicates a 

reversal of intensities between two compared images.  In this case, the 

corresponding area should be identified as a fault in the defect detection 

application.  In this study, Qr value is linearly converted to an 8-bit 

intensity function (i.e., Qr x 255) so that the defective areas can be visually 

observed in the resulting image.  Since a negative value of Qr shows a 

strong evidence of defect, we simply set the negative Qr to zero, and display 

an intensity of zero (i.e., a black pixel) in the resulting image.  The 

clarification of Qr  is given on page 8 (the first paragraph). 

- Since the correlation coefficient is a commonly used metric to evaluate the 

linearity of the resulting shape in the Q-Q plot, we retain it in this paper for 

interested readers. 

- The word “discriminatability” has been changed to “discrimination 

capability” in the revised manuscript. 

Responses to reviewer 2



5 & 6.  Given an observed data set { }nxxx ...,,, 21 , the Chi-square statistic is defined 

by 

2

1

22 )( σµχ
=

−=
n

i

ix

       if sxi '  are normally distributed with mean µ  and standard deviation σ .

If the distribution is unknown, 2χ  can be calculated by 

2

1

22 )( i

n

i

ii EEx
=

−=χ

       where iE  is the expected value associated with ix .

The computation of the p-value in eqs. (9)-(10) is reformulated, and the  

Gamma function is clearly defined in eq. (11) for better understanding. 

The clarification of the Chi-square statistic and the p-value is given on page 

8 in the revision. 

7.  The typing mistake “Theses results” has been corrected in the revision (page 9,  

line 10 of paragraph 2). 

8.  The conventional form of a line function has been used in the revised manuscript  

(2
nd

 paragraph, page 10). 

9.  The symbol N(x,y) used for representing a search neighborhood has been  

discarded, and improved with a simpler and clearer representation (see the  

equation and description on page 13). 

10 & 11. The web sites for references (Lewis, J. P., 2003) and (UCLA, 2003) have  

been verified and corrected. 


