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1. INTRODUCTION 

 

 Template matching has been a popular and easily-implemented method for object 

detection [1], OCR [2] and PCB inspection [3]. It finds a pattern in the scene image 

by sliding the window of a reference template in a pixel-by-pixel basis, and 

computing the degree of similarity between them, in which the measure of similarity  

is commonly given by correlation or normalized correlation [4]. 

 

 Pixel-by-pixel template matching is very time-consuming. For an input image of 

width N, and the template of width W, the computational complexity is in the order of 

22 NW‧ , given that the object orientations in both images to be matched are 

coincident. When we search an object with unknown orientation, the straightforward 

way to do template matching is to rotate the reference template in every possible 

orientation. The exhaustive template matching is extremely computation-intensive, 

and becomes impractical when arbitrary rotation is present. In the past few years, new 

template matching algorithms for multiple rotated templates have been proposed 

using the Karhune-Loeve (K-L) transform [5,6], and Fourier and K-L decomposition 

[7]. In their methods, the K-L transform is first applied to a set of rotated templates, 

and eigenvectors are extracted from them. Each template in the training set is 

approximated by a linear combination of salient eigenvectors. Normalized correlation 
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between rotated templates and the input image is then computed by substituting the  

approximations for the templates. 

 

 Matched filtering approaches using Gabor filters and wavelets [8,9,10] are 

popular alternatives in recent years for detecting objects in complicated images. 

However, they generally require significant amount of computation, and are of limited  

use because each view of the object may require a unique filter. 

 

 Existing template matching algorithms generally focus on detecting objects in 

gray-level images. Chromatic information of object patterns is not fully utilized to 

enhance the discrimination. Since color images contain more information per pixel 

than gray-level ones, color machine vision has been an active field during the last few 

years in pattern recognition applications. A simple and effective recognition scheme is 

to represent and match images on the basis of color histograms. Swain and Ballard [11] 

have proposed a color indexing method based on matching of color histograms for 

image retrieval. Gevers and Smeulders [12] analyze and evaluate various color 

models for the purpose of recognition of multicolored objects in the changes of 

illumination. In their experiment, reference objects are recorded in isolation (one per 

image) against a simple white cardboard background. The color indexing method is  

used to measure the similarity.  

Mehtre et al. [13] propose the reference color table method for image retrieval. 

The method defines a table of reference colors, which contains a set of pre-selected 

color classes. In the matching process, each pixel in the color image is assigned to its 

nearest color class in the table, and the distance measure is used to compute the 

similarity based on the histogram of the newly assigned color classes. Kankanhalli et 

al. [14,15] use unsupervised clustering algorithms to determine the color classes so 
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that a priori knowledge is not necessary to set up the reference color table. Existing 

color-image matching algorithms basically use only color information from the color 

histogram of an image without utilizing spatial information of the object pattern. 

Those approaches may be suitable for image retrieval applications or detecting 

colored objects in a simple background. They possibly generate false match for  

colored objects in complex images. 

 Our work has been motivated by a need to develop an efficient color matching 

technique so that the detection of colored objects in a complex background can be 

effective and fast. For solving the problem of arbitrary orientation, we propose a 

rotation-invariant representation of colored patterns based on the color ring-projection 

transformation. Color ring-projection transforms the 2-D color image contained in a 

circular window into 1-D color signals as a function of radius. The color features of 

each ring with a specific radius are represented by the mean RGB tristimulus values 

of all pixels falling on the ring. The proposed matching process involves two phases. 

Phase I rapidly selects the most likely regions of a reference template in the scene 

image by computing the normalized correlation of color ring-projection patterns 

between them. Since the color ring-projection representation preserves only partial 

spatial information of the original 2-D image pattern, phase II then verifies the 

candidate locations selected in phase I by measuring the normalized correlation 

between the reference template and the candidate regions using the pixel-to-pixel 

template matching. In order to make the pixel-to-pixel matching rotation-invariant, we 

propose a new estimation scheme to determine the orientation of a colored pattern.  

We can simply rotate the reference template so that it aligns itself with the degree of 

rotation in the scene image. Therefore, the pixel-to-pixel matching in phase II is only 

computed for a few candidate locations, each in a specific orientation. This  

results in significant saving of computational time. 
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 This paper is organized as follows: Section 2 first describes the proposed color 

ring-projection representation of colored objects, and the similarity measure of 

normalized correlation. Then the estimation of colored-object orientation is presented, 

and the normalized correlation of pixel-to-pixel template matching in color images is 

defined. The estimation accuracy of rotational angles is evaluated based on the 

experimental results of five colored test samples. Section 3 presents the experimental 

results for evaluating the efficacy of the proposed pattern matching algorithm. The  

paper is concluded in Section 4. 

 

2. COLOR PATTERN MATCHING 

 

2.1 Color Ring-Projection 

 

 Pattern matching basically involves two tasks: pattern representation followed by 

a matching process based on some similarity measures. In order to reduce the 

computational burden in the matching process, a new color ring-projection is 

proposed. It transforms a 2-D color image into a rotation-invariant representation in 

the 1-D ring projection space. The proposed transformation scheme for colored 

patterns is inspired by the ring projection algorithm [16,17], which is originally  

developed for character recognition in binary images. 

 

 Color provides powerful information for pattern matching. The color of a pixel is 

typically represented with the RGB tristimulus values, each corresponding to the red 

(R), green (G) and blue (B) frequency bands of the visible light spectrum. Images in 

the RGB color model consist of three independent color planes. The color 
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ring-projection transformation is carried out separately in each of the three 

primary-color planes. Let R(x,y), G(x,y) and B(x,y) denote the R, G and B stimulus 

values at pixel coordinates (x,y), respectively. The pattern of interest is contained in a 

circular window of radius W. The radius chosen for the window depends on the size 

of the reference template. The color ring-projection of image plane R(x,y) is given as 

follows. First, R(x,y) in the Cartesian coordinates is transformed into the polar  

coordinates : 





=
=

θry
θrx

sin
cos

 

Hence, R(x,y) = R( θr cos , θr sin ). The color ring-projection of image R(x,y) at radius 

r, denoted by )(rpR , is defined as the mean value of R( θr cos , θr sin ) at the  

specific radius r. That is, 

∫=
π

θθθ
π

2 

0 
)sin,cos(

 2
1)( drrR

r
rpR  

Taking the mean of stimulus values for each specific ring reduces the effect of noise.  

The discrete representation of )(rpR  in a search window of radius W is given by  

 ∑=
k

kk
r

R rrR
n

rp )sin,cos(1)( θθ  (1) 

where nr is the total number of pixels falling on the circle of radius r, r = 0,1,2,…,W.  

The color ring-projections pG(r) and pB(r) of image planes G(x,y) and B(x,y) are  

defined in a similar way as pR(r), i.e., 

 ∑=
k

kk
r

G rrG
n

rp )sin,cos(1)( θθ  (2) 

 ∑=
k

kk
r

B rrB
n

rp )sin,cos(1)( θθ  (3) 

for r = 0,1,2,…,W. Therefore, a 2-D image with two independent variables x and y in 
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each color plane is now represented by the 1-D ring-projection pattern with one single 

variable r. Since the projection is constructed along circular rings of increasing radii, 

the derived 1-D color ring-projection pattern is invariant to the rotation of its original 

2-D image pattern. Figures 1(a) and 1(b) show the color images of a snail in two 

distinct orientations. Figures 1(c) - 1(h) present the plots of ring projections of three 

color planes as a function of radius r. It can be seen from the figures that the plots of 

ring projections are approximately identical, regardless of orientation changes. An 

original 2-D RGB image can now be represented by a sequence of RGB  

ring-projection vectors )(),(),()( rprprprP BGR=
v

, for r = 0,1,2,…,W. 

 

 In the matching phase, the measure of similarity is given by the normalized  

correlation. Let 

)(),(),()( rprprprP BGRM =
v

 

)(ˆ),(ˆ),(ˆ)( rprprprP BGRS =
v

 

)(rPM

v
 and )(rPS

v
 denote the RGB ring-projection vectors of the reference template 

and a scene subimage, respectively, at the ring of radius r, r = 0,1,2,…,W, where W is 

the radius of the search window. The elements of both )(rPM

v
 and )(rPS

v
 are 

calculated from eqs. (1)-(3). The normalized correlation between two color 

ring-projection sequences { WrrPM ,...,2,1,0|)( =
v

} and { WrrPS ,...,2,1,0|)( =
v

} is  

defined by        
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Here pµ and pµ̂ are the average values of the reference template and the scene 

subimage, respectively. 2
pσ  and 2ˆ pσ  are associated with the variances of the 

template and the scene subimage. Normalized correlation between the reference 

template and a rotated scene subimage is efficiently computed by substituting the 1-D 

ring-projection pattern for the original 2-D pixel-image. The computational 

complexity is significantly reduced from )( 2WO  in 2-D images to )(WO  in the 

1-D ring-projection space. The normalized correlation δp is between -1 and 1, and a 

perfect match of two identical patterns will have the maximum value of unity. 
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2.2 Pixel-to-Pixel Matching with the Estimated Orientation 

 

 The normalized correlation δp defined in eq. (4) is initially used in the 

matching process to select the best-matched candidates. Since the 1-D color 

ring-projection representation does not sufficiently preserve the spatial information of 

the original 2-D color image, the locations of the selected candidates in the matching  

phase are verified using the pixel-to-pixel template matching. Let 

 ),(),,(),,(),( jiBjiGjiRjiCM =
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v
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v
 represent, respectively, the original RGB images of the 

reference template and a scene subimage contained in a circular window of radius W, 

where the elements of ),( jiCM

v
 and ),( yxCS

v
 are the R, G and B tristimulus values  

of a pixel. The normalized correlation between two RGB images  
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[ ]

22 ˆ

ˆ3),(),(

cc

v

vj

w

wi
cccSM

c

NjyixCjiC

σσ

µµ
δ

．

∑∑
−= −=

−++•
=

vv

 (5) 

where [ ]∑∑
−= −=

++=
v

vj

w

wic
c jiBjiGjiR

N
),(),(),(

3
1µ  

 [ ]∑∑
−= −=

++++++++=
v

vj

w

wic
c jyixBjyixGjyixR

N
),(ˆ),(ˆ),(ˆ

3
1µ̂  

 [ ] [ ] [ ]{ }∑∑
−= −=

−++=
v

vj
cc

w

wi
c NjiBjiGjiR 2222 3),(),(),( µσ  



 9 

 [ ] [ ] [ ]{ } 2222
ˆ3),(ˆ),(ˆ),(ˆ ˆ c

v

vj
c

w

wi
c NjyixBjyixGjyixR µσ ∑∑

−= −=

−++++++++=  

 22 iWv −=  

 =cN the total number of pixels in the circular window. 

 

 The value of pixel-based correlationδc is also between -1 and 1, and the perfect 

match will have a maximum value of unity. Since the correlation δc computes the 

color information based on the 2-D spatial location of each pixel in the image, the 

resulting correlation coefficient is sensitive to orientation changes. If a clue regarding 

rotation can be extracted from the input subimage { } ),( yxCS

v
, then simply rotate the 

template { } ),( jiCM

v
 so that it aligns itself with the degree of rotation in { } ),( yxCS

v
. 

This normalization for rotation avoids exhaustive rotations of the template to look for  

the best match. 

 

 In binary images, the orientation of an object can be easily determined from the 

principal axes (eigenvectors) of the covariance matrix of the pixel coordinates [4]. In 

color images, the orientation of a colored pattern is difficult to define. Pixels with 

different color values in color images can be considered as particles with different 

densities in physical objects. Then the usual practice in physics is to choose the axis 

of least second moment [18] as the object direction. We find the line for which the  

integral of the square of the distance to points in the object is a minimum 

∫ ∫= dxdyyxdE ),( 2ρ  

where d is the perpendicular distance from the point (x,y) to the line sough after, and 

),( yxρ  is the density at (x,y). By minimizing E , we can obtain the orientation θ of  
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the line [18]: 

 )(tan
2
1 1

ca
b
−

= −θ  (6) 

where ∑∑=
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)','( yx  are the shifted coordinates with the origin (0,0) at the center of the search 

window. 

 

 For an object in the binary image, the density )','( yxρ  is uniform, and is 

simply given by the binary gray-value of pixels. In color images, the value of a color 

feature can be used to represent the density )','( yxρ  of each pixel in the search 

window. In this study, we simply select one salient color feature derived from various 

color models, and then normalize the value of the color feature that sums to unity for 

all pixels in the search window to represent the density of a colored pixel. We 

consider two popular color models HSI and CIELAB [4,19] to obtain various color  

features. The conversion from the RGB space to the HSI space is given by 
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Here color features I, S and H represent intensity, saturation and hue of a color,  

respectively. 
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 The CIELAB color space is an international standard, which corresponds to 

human color perception and very closely resembles uniform color space. The 

CIELAB space requires an intermediate transform to the XYZ space from the system  

dependent RGB space. The transform for NTSC color vision sensor is 
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The CIELAB equation is then applied for tristimulus values X, Y and Z: 
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where Xn, Yn and Zn are the tristimulus values of the reference white. L* is a correlate 

to perceived lightness. The ∗a  and ∗b  dimensions correlate approximately with 

red-green and yellow-blue chroma perceptions. The CIELAB color space can also be  

represented in terms of cylindrical coordinates, which provide predictors of chroma 

∗
abC  and hue abh  as expressed below : 

 2
122 )( ∗+∗=∗ baCab  

 ( )∗∗= −

a
bhab

1tan  

 Given a color feature ),( yxfc , where 

 { }∗∗∗∗∈ ababc ChbaLISHyxf   ,  ,  ,  ,  ,  ,  ,),(  

the density ),( yxρ  at pixel (x,y) is defined by  
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∑
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cWji
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jif
yxfyx
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for all (x,y) contained within the search window Wc. The gray value of a pixel in its 

corresponding gray-level image is also considered as one of the color features so that 

the performance of the density representation in both color images and gray-scale  

images can be evaluated in the experiment. 

 

 Figures 2(a) - 2(e) show five test samples used in this study for evaluating the 

angular accuracy of the proposed orientation estimator. Each test sample is contained 

in a circular window of radius 25 pixels, with eight-bit intensity per color band. Also, 

each test sample is synthetically rotated from 0° to 360° in 1° increment so that the 

estimated orientations can be compared with the actual ones. A total of 360 rotated 

images is created for each of the five test samples. Table 1 summarizes means, 

standard deviations and maximum values of the angular errors of the estimated 

orientations. It can be seen from Table 1 that color feature ∗a  derived from the 

CIELAB space gives the best overall performance. The mean angular error of 

orientation is less than 5°, and the standard deviation is smaller than 2.7°. The 

maximum angular error in 1, 800 ( 360 orientations  5 test samples) images is only 

8°. 

The gray values in gray-level images perform unstably for the five test samples. 

Color feature S derived from the HSI space works poorly for the test samples shown 

in Figures 2(b), 2(c) and 2(e), and their resultant statistics are not included in Table1. 

Color feature H from the HSI space gives the mean angular error less than 7°. 

However, it yields the maximum angular error of 18° and the standard deviation as 

large as 5.3°. It is unstable for angular estimation. Compared with the exhaustive 

matching of the reference template in all possible orientations, the proposed 
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pixel-to-pixel template matching in the verification phase can be calculated efficiently 

by searching only the neighborhood of the estimated orientation. Based on our 

empirical study, search angles between -5° and 5° in the vicinity of the estimated 

orientation is generally sufficient to reach the best match with the use of color feature 

∗a . 

 

3. EXPERIMENTAL RESULTS 

 

 In this section, we present the experimental results for evaluating the efficacy of 

the proposed color pattern matching method. In our implementations, all algorithms 

are programmed in the C language and executed on a personal computer with a 

Pentium 300 MHz processor. The effective image size is 256 256 pixels with eight  

bits of intensity per color band. 

 In order to evaluate the effect of rotation changes, two test samples shown in 

Figures 3(a) and 4(a) are rotated in two distinct orientations as shown in Figures 3(b1) 

- 3(c1) and 4(b1) - 4(c1). The patterns marked by yellow circles in Figures 3(a) and 

4(a) are used as reference templates. The five largest correlation coefficientsδp 

derived from the color ring-projection matching are marked by circles of colors red, 

green, blue, yellow and indigo in their descending order. Figure 3(a) shows an image 

that contains many small objects similar in shapes and colors. Figures 3(b1) and 3(c1) 

present the candidate locations of the reference templates detected by the color 

ring-projection matching. Figures 3(b2) and 3(c2) display the verification results from 

the pixel-to-pixel template matching. Figure 4(a) shows the image containing many 

similar resistor components of different resistances (coded by different color stripes) 

in a complex background. The target resistor of 392Ω placed in arbitrary locations 

and orientations is reliably detected in both scene images as shown in Figures 4(b2) 
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and 4(c2). Notice that the location with the largest correlation coefficient δp (marked 

by a red circle in Figures 3(b1),3(c1), 4(b1) and 4(c1)) obtained from the color 

ring-projection matching is coincident with the best match found in the pixel-to-pixel 

template matching for each of the two test samples. All instances of reference 

templates are correctly located, regardless of rotation changes. 

 

 Figures 5 and 6 show additional experimental results of detecting small parts on 

printed circuit boards (PCBs). Figure 5(a) presents the original image with the target 

component marked by a yellow circle. Figures 5(b) and 5(c) show that the target 

component is well located in color ring-projection and pixel-to-pixel matching phases, 

respectively. Notice that the scene image is rotated by 90° with respect to the original 

one, and the estimated orientation is 89°. In Figure 6(a), the target object is the solder 

pad labeled “R07” on the PCB, and is marked by a yellow circle in the image. Figure 

6(b) shows the locations of the five largest correlation coefficientsδp in the 

ring-projection matching phase. Figure 6(c) presents the best match verified by the 

pixel-to-pixel template matching. The scene image is a shifted version of the original 

one, and the estimated orientation is 1°. It can be seen from Figures 6(b) and  

6(c) that the target object is well located as indicated by the red circles in the images. 

Figures 7 and 8 show the experiments that detect objects in more hostile environments. 

Figure 7 illustrates the detection result for objects in severely overexposed and 

underexposed images. Figure 8 presents the detection result for objects in different 

color backgrounds. It can be seen from both Figures 7 and 8 that the proposed method 

also works well for detecting objects in varying environment. 

 

4. CONCLUSION 
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 Template matching has been a fundamental technique in machine vision for 

detecting objects in complex images. One of the major limitations of traditional 

pixel-by-pixel template matching is that an enormous number of templates must be 

matched against an image field to account for changes in rotation of reference 

templates. Many existing template matching methods are mainly applied to gray-level 

images. They ignore the powerful color information and make the object detection  

task unreliable. 

 

 In this study, we have proposed a rotation-invariant template matching method 

for detecting objects in color images. The complexity and computation load of the 

correlation function method for detecting objects in arbitrary orientations are reduced 

significantly by the 1-D color ring-projection representation. It can rapidly select the 

possible locations of a reference template in the input scene by computing the 

normalized correlation of 1-D color ring-projection patterns. The candidate locations 

with high correlation coefficients obtained in the color ring-projection matching phase 

are then verified by the pixel-to-pixel template matching. To make the pixel-based 

matching invariant to rotation, the color feature ∗a  derived from the CIELAB space 

is used as pixel density, and the axis of least second moment is employed to estimate 

the rotational angle of the reference template. This alleviates the exhaustive search of  

unknown orientation in traditional template matching methods. 

 

 For an image of size N N, and a circular window of radius W, the computational 

complexity of the proposed color ring-projection matching is given by )( 2NWO ⋅  

for objects in arbitrary orientations, compared with )( 22 NWO ．  of the traditional 

pixel-by-pixel template matching for objects in each possible orientation. The 

proposed pixel-to-pixel matching in the verification phase is only computed for a few 
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candidate locations in a specific orientation. Therefore, the proposed pattern matching 

scheme is efficient in computation using the rotation-invariant representation, and is 

robust in matching using the color information. Computational time of the proposed 

color ring-projection matching is 6 seconds on the Pentium 300 MHz personal 

computer for an arbitrarily-rotated image of size 256 256 pixels and a circular 

window of radius 25 pixels. For traditional template matching methods, 

computational time is 20 seconds for images in a fixed orientation. If the object 

orientation can be arbitrary, and the search angle ranges from 0° to 360° with 1° 

resolution, computational time of traditional methods will dramatically increase to  

7,200 seconds.  
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Figure 1. Color ring-projection representation of a snail image in two distinct 

orientations. 
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Figure 2. Five test samples used for orientation estimation. 
 
 

Table 1. Estimated rotational errors from various color features. 

Color image Gray-level 
image HSI CIELAB Test 

Sample 
Statistics 
(degree) Gray level H S I L a* b* *

abC  abh  
Mean error 4.2 6.4 3.0 6.3 4.3 4.5 2.2 3.1 4.7 

Std. dev. 2.4 4.4 1.8 3.4 3.1 2.7 1.8 2.2 3.4 Fig. 2(a) 
Max. error 8 16 8 12 10 8 8 9 15 
Mean error 1.1 3.7 - 1.7 2.7 2.4 7.7 3.1 7.9 

Std. dev. 0.7 2.9 - 1.1 2.6 1.9 4.9 1.7 3.8 Fig. 2(b) 
Max. error 2 11 - 4 8 6 15 8 13 
Mean error 34.6 6.7 - 7.9 5.3 1.5 0.8 1.0 4.9 

Std. dev. 25.7 5.3 - 5.2 3.2 1.0 0.4 0.9 3.7 Fig. 2(c) 
Max. error 67 18 - 17 12 4 2 3 14 
Mean error 13.0 3.8 3.8 2.0 5.6 0.8 5.6 9.3 6.3 

Std. dev. 9.8 2.2 2.8 1.2 5.0 0.7 2.9 7.0 4.5 Fig. 2(d) 
Max. error 32 7 10 4 16 2 11 24 14 
Mean error 2.5 1.7 - 2.9 4.1 2.3 35.6 7.3 2.1 

Std. dev. 1.7 1.7 - 2.2 2.8 1.4 26.0 4.7 1.5 Fig. 2(e) 
Max. error 6 5 - 8 10 5 76 16 5 
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Figure 3. An image,which contains many similar objects, used to evaluate the effect 

of orientation changes: (a) the original color image (the reference template 
is marked by a yellow circle); (b1),(b2) the detection results from the 
matching phase (color ring-projection matching) and the verification phase 
(pixel-to-pixel matching), respectively, for one rotated image; (c1), (c2) the 
detection results from the matching phase and the verification phase for 
another rotated image. 
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Figure 4. A resistor image used to evaluate the effect of orientation changes: (a) the 

original color image (the reference template is marked by a yellow circle); 
(b1),(b2) the detection results from the matching phase (color 
ring-projection matching) and the verification phase (pixel-to-pixel 
matching), respectively, for one rotated image; (c1), (c2) the detection 
results from the matching phase and the verification phase for another 
rotated image. 
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Figure 5. Detection of a resistor 

component on the PCB: (a) 
the original image; (b) the 
candidates with five largest 
correlation values obtained 
from the matching phase; 
(c) the best match verified. 
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Figure 6. Detection of a solder pad 

labeled “R07”: (a) the 
original image; (b) the 
candidates with five largest 
correlation values obtained 
from the matching phase; (c) 
the best match verified. 
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Figure 7. Detection of an object in 

varying illumination : (a) the 
template image; (b) the 
overexposed image; (c) the 
underexposed image. 
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Figure 8. Detection of an object in 

varying background: (a) the 
template image; (b) the 
image with a yellow 
background; (c) the image 
with a blue background. 

 

 


