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1. Introduction 

 

 Template matching has been a commonly used method for detecting objects of 

interest in complex images.  It finds a desired pattern in the scene image by sliding 

the window of a reference template in a pixel-by-pixel basis, and computing the 

degree of similarity between them, in which the measure of similarity is commonly 

given by correlation or normalized correlation [Gonzalez, 1992]. 

 

 Pixel-by-pixel template matching is very time-consuming.  For an input image 

of size NN × , and the template of size WW × , the computational complexity is 

O( 22 NW‧ ), given that the object orientations in both images are coincident.  When 

we search an object with unknown orientation, the straightforward way to do template 

matching is to rotate the reference template in every possible orientation.  It makes 

the matching scheme become impractical when arbitrary rotation of a search object is 

present. 

 

  In order to alleviate the drawbacks of long processing time and sensitivity to 

rotation in template matching, the coarse-to-fine and multiresolution approaches 

[Rosenfeld and Vanderbrug, 1977; Gross and Rosenfeld, 1987; Crowley and 
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Sanderson, 1987] have long been used in template matching or object detection to 

reduce computation.  In recent years, the wavelet transform is a popular alternative 

in multiresolution analysis for coarse-to-fine registration due to its space-frequency 

localization properties.  Stone et al. [1999] used a mathematical model to study the 

effects of image translation on wavelet-based image registration.  Allen et al. [1993] 

developed orthogonal wavelet pyramid methods for registration and matching of 

object contours in their curvature representation.  The registration algorithm begins 

with a set of feasible points at the coarest level of representation.  Feasible points at 

finer scales are found, furnishing feasible paths up the pyramid.  The best complete 

feasible path to the finest level of representation gives the registration between the 

candidate and template patterns.  Yoon et al.[1998] presented a continuous wavelet 

transform approach to obtaining the curvature scale-space representation of contours 

for object recognition.  Zero crossings of the curvature function at various wavelet 

resolutions are used as features for recognition. 

 

In optical wavelet-based approaches, Roberge and Sheng [1994] developed an 

optical composite wavelet-matched filter (WMF) to perform the continuous wavelet 

transform for edge feature enhancement and the correlation between two wavelet 

transforms for pattern recognition.  Chapa and Raghuveer [1995] also considered the 

design of matched filters for pattern recognition.  They developed a technique for 

deriving the wavelet directly from the desired signal spectra such that the mean 

squared error between two compared spectra is a minimum. Maestre et al. [1997] 

presented a sequential approach for pattern recognition tasks based on the use of a 

bank of filters matched to different wavelet coefficients of the targets.  Since the 

proposed filtering bank is sensitive to rotation, it only works for the object in a known 

orientation.  Ahmed et al. [1995] proposed a wavelet transform-based correlator for 



 3 

the recognition of rotationally distorted images.  The success of the method needs to 

carefully select an optimal set of filter parameters and a mother wavelet filter.  In 

order to recognize rotationally distorted objects, a large set of training images at 

different resolutions and in different orientations is required for the filters to extract 

features. Then a composite reference feature vector is formulated from these features 

for use in the correlator. 

 

The wavelet transform methods aforementioned for pattern matching and 

recognition are generally based on the extraction of object features in different scales 

and subbands.  They are restricted to the objects in a known orientation, or require a 

large training set of objects in all possible orientations.  Our work has been 

motivated by a need to develop an efficient template matching scheme so that the 

detection of arbitrarily oriented objects in a complex gray-level image can be 

achieved.  In this paper, we propose a wavelet decomposition approach for template 

matching.  The multiresolution wavelet technique reduces an original image to   

small subimages at a low multiresolution level.  It also transforms the image into a 

representation in which both spatial and frequency information present.  It is ideally 

suited for highlighting local feature points in the decomposed subimages, and results 

in significantly computational saving in the matching process. 

 

For one level of the standard wavelet decomposition, we obtain one smooth (low 

frequency) subimage and three detail (high frequency) subimages that contain fine 

structures with horizontal, vertical, and diagonal orientations.  In the matching 

process, we first decompose an original image into different resolution levels, and use 

only the pixels with high wavelet coefficient values in the composite detail subimage 

at a lower level to compute the normalized correlation between the reference pattern 
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and the scene image.  This significantly reduces the computational burden of the 

traditional pixel-by-pixel matching.  To make the matching invariant to rotation, we 

use the ring project to represent an object pattern in the decomposed subimage.  The 

ring projection representation converts the 2D pattern in a circular window into a 1D 

gray-level signal as a function of radius.  The ring projection representation not only 

is rotation-invariant but also reduces the computational complexity of normalized 

correlation from O(W2) to O(W), where W is the radius of the circular window.  The 

wavelet decomposition along with the ring projection representation makes the 

template matching scheme feasible and efficient for detecting objects in arbitrary 

orientations. 

 

This paper is organized as follows: Section 2 first introduces the 2D wavelet 

decomposition and the composition of three detail subimages at a lower resolution 

level.  Section 3 describes the 1D ring projection representation for 2D gray-level 

image patterns, and the similarity measure of normalized correlation.  Section 4 

discusses the effects of changes in wavelet support length and rotation on detection 

results.  Experimental results on a variety of real objects including IC components on 

printed circuit boards, bar-coded strips and license plates on vehicles are also 

presented in this section.  This paper is concluded in section 5. 

    

 

2. Wavelet Decomposition 

 

  

 The wavelet transform of a 2D image ),( yxf is defined as the correlation 

between the image and a family of wavelet functions { ),( yxsϕ }: 
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Where s  is the scale parameter, and ),( yx tt the translation parameters in the x-axis 

and y-axis. 

 

  In most practical applications, one never explicitly calculates the mother wavelet 

),( yxϕ .The pyramid-structured wavelet decomposition operation [Mallat, 1989] 

consists of filtering and down-sampling horizontally using 1D lowpass filter L (with 

impulse responses )(il ) and highpass filter H  (with impulse responses )( jh ) to 

each row in the image ),( yxf , and produces the coefficient matrices ),( yxf L  and 

),( yxf H . Vertically filtering and down-sampling follows, using the lowpass and 

highpass filters L  and H  to each column in ),( yxf L  and ),( yxf H , and 

produces 4 subimages ),( yxf LL , ),( yxf LH , ),( yxf HL  and ),( yxf HH  for one 

level of decomposition. ),( yxf LL  is a smooth subimage, which represents the coarse 

approximation of the image. ),( yxf LH , ),( yxf HL  and ),( yxf HH  are detail 

subimages, which represent the horizontal, vertical and diagonal directions of the 

image, respectively. Figure 1 depicts 1 stage in a multiresolution pyramid 

decomposition of an image. The detailed 2-D pyramid decomposition algorithm, with 

periodic boundary conditions applied, can be expressed as follows :  

 

Let =× NM the original image size of ),( yxf  

=)(il the analysis lowpass coefficients of a specific wavelet basis, 

1-N,0,1,2,i l…= , where lN  is the support length of the filter L . 

=)( jh the analysis highpass coefficients of a specific wavelet basis, 
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1N0,1,2,...,j h −= , where hN  is the support length of the filter H . 

Then, 
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The 2-D pyramid algorithm can iterate on the smooth subimage ),( yxf LL  to obtain 

four coefficient matrices in the next decomposition level. 

 

 The lowpass coefficients )(il and highpass coefficients )( jh of various wavelet 

bases such as Haar and Daubechies can be found in references [Daubechies, 1992; 

Tsai and Hsiao, 2000].  Our primary experiments show that the choice of wavelet 

bases has only small effects on the detection results.  However, the length of suport 

of a wavelet basis is crucial for the success of matching.  Due to the boundary effect 

of the limited template size, the computation of wavelet coefficient for pixels in the 
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vicinity of window boundaries depends on pixels that lie beyond the boundaries of the 

template and extrapolation of existing pixel data.  For a wavelet basis with long 

support length, the boundary effect is enlarged and poor correlation may be generated 

in the matching process.  In practice, a wavelet basis with shorter supports such as 

the Haar wavelet with a very compact support of 2 and a 4-tap Daubechies wavelet 

are the best choice for the investigated application.  Wavelet bases with short support 

lengths are not only less sensitive to the boundary effect but also more 

computationally efficient, compared to those with long support lengths. 

 

 The reduction factor of an image size is given by J4 , where J  is the number of 

decomposition levels.  For a level 2 decomposition, the size of an original image can 

be reduced by a factor of 16.  This results in great computational saving in the 

matching process.  In practice, the effective size of the smallest subimages in the 

decomposition should be used as a stopping criterion for determining the maximum 

number of decomposition levels.  If the decomposed subimage has an 

over-downsampling size, the locations and wavelet coefficient values of object 

features may change dramatically from sample to sample, and generate a false match 

accordingly. Our experimental results on a variety of test images show that the 

smallest size of a decomposed template subimage should be larger than 2020×  

pixels. 

 

 The matching process can be performed either on the decomposed smooth 

subimage or on the decomposed detail subimages at a lower multiresolution level.  

In this study, we select the detail subimages for the computation of normalized 

correlation so that only pixels with high energy values in the detail subimages are 

used as the matching candidates.  It alleviates pixel-by-pixel matching in the smooth 
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subimage.  As aforementioned, three detail subimages containing, separately, 

horizontal, vertical, and diagonal edge information of object patterns are obtained in 

one decomposition level.  These three detail subimages are combined as a single 

composite detail subimage that simultaneously displays horizontal, vertical and 

diagonal edge information in the same images.  The composite detail subimage is 

given by  

                ),(),(),(),( )()()()( yxfyxfyxfyxf J
HH

J
HL

J
LH

J
d ++=             (5) 

 

where ),()( yxf J
LH , ),()( yxf J

HL and ),()( yxf J
HH are the horizontal, vertical and diagonal 

detail subimages at resolution level J ,respectively. They can be calculated from eqs. 

(1)-(4).  We use the 1l -norm as the energy function for each pixel in the composite 

detail subimage ),()( yxf J
d . Although the 2l -norm can also be used for the energy 

function, primary experiments show that the 1l  and 2l  norms make little difference 

in the final results.  The 1l -norm is chosen due to its simplicity in computation.  

Given an original image of size M ×  N, the size of the composite detail subimage 

),()( yxf J
d  at resolution level J is reduced to )

2
()

2
( JJ

NM
× . 

 

 The matching process can now be carried out on the composite detail subimage.  

Since the energy values of most pixels in the detail subimage are approximate to zero, 

only the pixels with high energy values are considered for further matching.  

Depending on the complexity of a scene image, the high energy-valued pixels 

generally dominate only 20 to 30% of the entire composite detail subimage.  The 

threshold for selecting high energy-valued pixels can be manually predetermined or 

adaptively determined by using binary thresholding techniques such as the 

well-known Otsu’s method [Otsu, 1979].  
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3. Ring Projection Representation 

 

    Pattern matching basically involves two tasks: pattern representation followed by 

a matching process based on some similarity measures. In order to reduce the 

computational burden in the matching process and make the match invariant to 

rotation, a ring projection transformation is proposed.  It transforms a 2D gray-level 

image into a rotation-invariant representation in the 1D ring projection space. The 

proposed transformation scheme for gray-level patterns is inspired by the ring 

projection algorithm [Tang et al., 1991; Yuen et al; 1998], which is originally 

developed for character recognition in binary images. 

   

Let the pattern of interest be contained in a circular window of radius W.  The 

radius chosen for the window depends on the size of the reference template.  The 

ring projection of the composite detail subimage ),()( yxf J
d is given as follows. First, 

),()( yxf J
d  in the Cartesian coordinates is transformed into the polar coordinates: 





=
=

θry
θrx
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The ring projection of image ),()( yxf J
d at radius r, denoted by )(rp , is defined as 

the mean value of )sin,cos()( θθ rrf J
d at the specific radius r.  That is, 

∫=
π

θθθ
π
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0 
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 2
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r
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d  

Taking the mean energy value for each specific ring reduces the noise effect and 

makes the projected values in different ring radii limited to a controlled range.  The 
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resulting )(rp  is equal to the mean energy values as distributed along concentric 

circular rings. 

  

The discrete form of )(rp  in a search window of radius W is given by 

∑=
k

kk
J

d
r

rrf
n

rp )sin,cos(1)( )( θθ                  (6) 

where nr is the total number of pixels falling on the circle of radius r, r = 0,1,2,…,W.    

Since the projection is constructed along circular rings of increasing radii, the derived 

1D ring projection pattern is invariant to rotation of its corresponding 2D image 

pattern.  Figures 2(a) and 2(b) show a lion image in two distinct orientations.  

Figures 2(c) and 2(d) present the plots of ring-projected values as a function of radius 

r.  It can be seen from the figures that these two ring-projection plots are 

approximately identical, regardless of orientation changes. 

 

 In the matching phase, the measure of similarity is given by the normalized  

correlation.  Let 

>=< )(),...,1(),0( WpppPM , 

and 

>=< )(),...,1(),0( WpppPS
)))  

represent the ring-projection vectors of the reference template and a scene subimage, 

respectively.  The normalized correlation between ring-projection vectors MP and 

SP  is defined as  
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The correlation coefficient pρ is scaled in the range between –1 and 1. The 

computation of correlation coefficient is only carried out for those high energy-valued 

pixels in the composite detail subimage.  Note that the dimensional length of the 

ring-projection vector is only W + 1, where W is the radius of the circular window.  

This significantly reduces the computational complexity for the correlation 

coefficient  . 

 

     Given an original image of size NM ×  and the circular window of radius W , 

the computational complexity of a traditional pixel-by-pixel matching scheme is given 

by )( 2WNM ⋅⋅⋅ π for objects in each possible orientation.  However, for a level 

J wavelet decomposition, the computational complexity of the proposed matching 

scheme is reduced to %)2()4( kWNM JJ ⋅⋅⋅  for objects in arbitrary orientations, 

where %k is the percentage of high energy-valued pixels in the composite detail 

subimage ),()( yxf J
d , and %k < 1. Once the candidate locations of a reference 

pattern are identified in the composite detail subimage at a lower resolution level, we 

then verify those candidate locations by computing the correlation coefficients in the 

vicinity of their corresponding ones in the original (level 0) image.  Let ),( ** yx be 

the detected coordinates in the level J detail subimage.  Then, the corresponding 

coordinates of ),( ** yx  in their level 0 image are given by )2,2( ** yx JJ . If the 

localization error in one axis is t∆  in the level J subimage, the search region in the 

original image should be )2()2( ** tytx JJ ∆±×∆±  for fine tuning.  Our primary 

experiments indicate that the localization error t∆  is generally within 2 pixels and 
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no more than 4 pixels for resolution level 2≤J , and window radius 20≥W . 

 

 

4. Experimental Results 

 

 

     In this section, we present the experimental results for evaluating the efficacy of 

the proposed template matching method.  All experiments are implemented on a 

personal computer with a Pentium III 450 MHz processor.  The images are 

256256×  pixels wide with 8-bit gray levels.  To illustrate the localization 

capability of the proposed method, the matched patterns shown in all figures in this 

section are based on the detected positions at the low resolution level without fine 

tuning at level 0.  The effects of changes in support length of a wavelet basis, 

rotation and lighting are first discussed in the subsection that follows. 

 

4.1 Effects of changes in wavelet support length, rotation and lighting  

 

     In order to evaluate the effect of a change in the support lengths of a wavelet 

basis, Figures 3(b), (c), (d) and (e) show the matching results from wavelet bases Haar 

(support length of 2), D4 (4-tap Daubechies), D8 (8-tap Daubechies) and D12 (12-tap 

Daubechies), respectively.  Figure 3(a) presents the original image of the reference 

template.  Figures 3(f), (g), (h) and (i) illustrate the composite detail subimages at 

resolution level 1 (J = 1) for Figures 3(b), (c), (d) and (e), respectively.  The circles 

shown in Figures 3(b)-(e) mark the detected locations of the best matches.  The 

matching results reveal that wavelet bases with shorter support lengths such as Haar 

and D4 (Figures 3(f) and 3(g)) work well for pattern matching tasks.  The edge 
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information in the composite detail subimages obtained from D8 and D12 (Figures 

3(h) and 3(i)) is severely distorted due to boundary effects.  The longer the support 

length is used, the worse the edge distortion is obtained.  Throughout this section, 

the D4 wavelet basis is used in the subsequent experiments.  It has been verified to 

be efficient and robust for many test samples in pattern matching tasks. 

 

     The effect of changes in rotation is evaluated using two test images shown in 

Figures 4 and 5.  The reference templates of a Chinese “one” and a snail image are 

marked with squares as shown in Figures 4(a) and 5(a), respectively.  Both test 

samples are rotated by 45, 90, and 220 degrees with respect to the original templates.  

Since the template sizes are 7676×  pixels in Figure 4(a) and 5656×  pixels in 

Figures 5(a), the level 1 decomposition is used so that the sizes of decomposed 

templates are not smaller than 2020×  pixels. The detection results are marked with 

circles and shown in Figures 4(b)-(d) and 5(b)-(d). It can be seen from both Figures 4 

and 5 that all instances of reference templates are correctly detected, regardless of 

rotation changes. 

 

     The effect of changes in illumination is evaluated using two test samples shown 

in Figures 6 and 7.  Figure 6(a) shows the reference template of a “Coca-Cola” cap 

marked with a square.  The template size is 130130×  pixels and, therefore, the 

composite detail subimage at resolution level 2 can be used for matching.  Figures 

6(b) and 6(c) are the underexposed and overexposed versions of Figure 6(a), 

respectively.  Figures 6(d) and 6(e) present the composite detail subimages at the 

second resolution level for Figures 6(b) and 6(c).  The detection results are marked 

with circles and shown in Figures 6(b) and 6(c).  Figure 7(a) shows one additional 

test template of a marble ornament with the size of 7070×  pixels (and, therefore, 
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level 1 decomposition is used).  Note that the template on the left is similar in 

appearance to the marble ornament on the right in the image.  Figures 7(b) and 7(c) 

are the underexposed and overexposed versions of Figure 7(a), respectively.  The 

detected instances of the template are marked with circles in these two figures.  The 

target template is well detected in the underexposed and overexposed images with a 

minor localization difference.  The experimental results from both Figures 6 and 7 

reveal that the proposed pattern matching scheme is robust for detecting objects under 

varying illumination. 

 

4.2 Industrial applications 

 

     In order to further demonstrate the effectiveness of the proposed pattern 

matching scheme, three object detection applications for IC components, bar-coded 

strips and license plates are examined in this subsection.  In IC component detection, 

the reference template with larger size of 8888×  pixels (Figue 8(a)) is searched on 

the composite detail subimage at level 2 decomposition.  The template with smaller 

size of 7272×  pixels (Figures 9(a)) is detected on the composite detail subimage at 

level 1 decomposition.  Note that both test samples in Figures 8(b) and 9(b) are 

rotated approximately by 90 degrees with respect to their reference templates.  As 

seen in Figures 8 and 9, the marked circles have reliably identified all desired IC 

components on the complex layouts of the printed circuit boards. 

 

     In the bar-coded strip detection, the main purpose of the application is to locate 

the position of the strip on a commodity rather than to decode the contents of the bar 

codes.  The reference templates are marked with rectangular frames as shown in 

Figures 10(a) and 11(a).  The template size in Figure 10(a) is 100100×  pixels, and 
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the level 2 decomposition is used accordingly.  The template size in Figures 11(a) is 

only 7474×  pixels and, therefore, the level 1 decomposition is used for matching.  

The detection results of the two test samples are marked with circles and displayed in 

Figures 10(b), and 11(b).  It can be seen from Figure 11(b) that there are two 

bar-coded strips in the test image.  The proposed method also works well to detect 

the target strip. 

 

     In license plate detection, we use one arbitrary plate shown in Figure 12(a) as 

the reference template to detect the locations of different plates on various vehicles, 

which are shown in Figures 12(b)-(e).  Figure 12(d) shows the plate on a car at the 

sloping position, and Figure 12(e) shows the plate on the front of a car.  The size of 

the reference plate is 7676×  and, therefore, the composite detail subimage at 

resolution level 1 is used for matching.  All detected plates are marked with circles 

in the test images.  Although the characters in the reference plate are different from 

those in all test plates, the proposed pattern matching scheme has reliably detected the 

locations of the plates regardless of the plates on the rear or the front of different cars. 

 

 

5. Conclusions 

 

 

Template matching has been a fundamental technique in machine vision for 

detecting objects in complex images.  The main limitations of traditional pattern 

matching methods are that an enormous number of templates must be matched against 

an image field to account for changes in rotation of reference templates, and the 

measure of similarity must be carried out in a pixel-by-pixel manner.  In this paper, 
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we have tackled the problem of pattern matching using the wavelet decomposition 

and ring-projection representation.  The proposed method significantly reduces the 

number of search pixels by using the composite detail subimage at a low resolution 

level.  The computation of correlation coefficients is only carried out for those high 

energy-valued pixels in the composite detail subimage. The 2D circular window for 

each high energy-valued pixel in the composite detail subimage is further transformed 

to a 1D pattern in the ring projection space.  The ring-projection representation not 

only reduces the computational complexity of the normalized correlation but also 

makes the detection invariant to rotation. 

 

     Based on the experiments in the previous section, a wavelet basis with short 

support lengths such as Haar and 4-tap Daubechies should be used in the wavelet 

decomposition to alleviate boundary effects for pattern matching tasks.  The size of 

the smallest decomposed template should not be less than 2020×  pixels, and it 

should be used as a stopping criterion for further decomposition. 

 

     Experimental results have shown that the proposed pattern matching scheme is 

efficient and robust for detecting complex objects in arbitrary orientations.  However, 

the proposed method in its current form is sensitive to scale changes.  It is 

worthwhile to extend the proposed method with the multiscale property of the wavelet 

transform for scale-invariant pattern matching. 
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Figure1. One stage in a multiresolution image decomposition. 
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Figure 2. A lion image in two different orientations: (a), (b) the original images; (c), 

(d) the corresponding ring projection plots of (a) and (b), respectively. 
Notice the resemblance between (c) and (d). 
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(a)  

 

 

 

 

(b) Haar  (f)  
   

 

 

 

(c) D4  (g)  
Figure 3. The effect of changes in wavelet support length : (a) the template image ; 

(b)-(e) the detection results from wavelet bases Haar, D4, D8 and D12, 
respectively ; (f)-(i) the composite detail subimages at resolution level 1 
for respective (b)-(e) 
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(d) D8  (h)  
   

 

 

 

(e) D12  (i)  
 

Figure 3. (Continued) 
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(a)  

 

 

 

(b)   (e)  

 

 

 

(c)   (f)  

 

 

 

(d)   (g)  
Figure 4. The effect of changes in image rotation for a Chinese “one ” image: (a) the 

template marked with a square; (b), (c), (d) the rotated images in 45o, 90o 
and 220o , respectively (the detected objects are marked with circles); (e), (f), 
(g) the corresponding composite detail subimages at resolution level 1. 
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(b)   (e)  

 

 

 

(c)   (f)  

 

 

 

(d)   (g)  
Figure 5. The effect of changes in image rotation for a snail image : (a) the template 

marked with a square, (b), (c), (d) the rotated images in 45o, 90o and 220o , 
respectively (the detected objects are marked with circles); (e), (f), (g) the 
corresponding composite detail subimages at resolution level 1. 
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(b)   (d)  

 

 

 

(c)   (e)  
Figure 6. The effect of changes in image illumination for a “Coca-Cola” template : (a) 

the image containing the template marked with a square; (b), (c) the 
underexposed and overexposed versions of the image ( the detected 
objects are marked with circles); (d), (e) the corresponding composite 
detail subimages at resolution level 2. 
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(b)   (d)  

 

 

 

(c)   (e)  
Figure 7. The effect of changes in illumination for a marble ornament template : (a) 

the image containing the template marked with a rectangular frame; (b), (c) 
the underexposed and overexposed versions of the image. ( the detected 
objects are marked with circles); (d), (e) the corresponding composite detail 
subimages at resolution level 1. 
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(c) 
Figure 8. Detecting an IC component of 

size 88×88 pixels: (a) the 
original PCB image; (b) the 
detected component marked 
with a circle; (c)the 
composite detail subimage at 
resolution level 2. 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 9. Detecting an IC component of 
size 72×72 pixels: (a) the 
original PCB image; (b) the 
detected component marked 
with a circle; (c) the 
composite detail subimage at 
resolution level 1. 
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(a) 

 
(b) 

 

 
 

(c) 

Figure 10. Detecting a bar-coded strip of 
size 100×100 pixels: (a) the 
original image; (b) the 
detected strip marked with a 
circle; (c) the composite detail 
subimage at resolution level 2. 

 
 
 
 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Detecting a bar-coded strip of 
size 74×74 pixels: (a) the 
original image; (b) the 
detected strip marked with a 
circle; (c) the composite detail 
subimage at resolution level 1. 
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(b)   (f)  
   

 

  
 

 

(c)  (g) 
Figure 12. Detecting license plates on cars: (a) the plate used as the template; (b)-(e) 

the detected plates marked with circles; (f)-(i) the corresponding 
composite detail subimages at resolution level 1. 
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(e)  (i) 
 
 

Figure 12. (Continued) 
 
 


