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Abstract

Theam of this paper isto locate the boundary defects such as open, short, mousebite, and
sour on Bdl Grid Array (BGA) substrate conduct paths using machine vison. The 2-D
boundaries of BGA substrate conduct paths areinitidly represented by the 1-D tangent angles.
The tangent angles are evauated from the covariance matrix eigenvector over a region of
support on a boundary segment. Boundary defective region results in irregular tangent angle
variations. Then, the wavelet transform decomposes the 1-D tangent angles and captures the
irregular angle variations by indicating larger magnitude of wavelet coefficients on finer scale.
Finaly, the upper limit for the wavelet coefficients of BGA substrate conduct paths can be
established by Quality Control (QC) skills. A boundary defect can be eesily located by if its
wavelet coefficients exceed upper limit. Rea BGA subgtrates with various boundary defects
are used as test samples to evauate the performance of the proposed method. Experimental
results show that the proposed method achieves 100% correct identification for BGA
subgrate boundary defects by appropriate wavelet bass and decompostion level. The
proposed method isinvariant with respect to the orientation of the BGA subgtrates, and it does
not require pre-stored templates for matching. This method is suitable for various types of
BGA substratesin smdl batch production because precise positioning of BGA subsirates and
the prestored templ ates are not required.

Keywords. BGA subgtrate conduct path; Defect detection; Covariance matrix eigenvector;
wavelet trandform; Rotation-invariant



1. Introduction

In recent years, Printed Circuit Board (PCB) contains more conduct paths to

provide functional variety but in a much smaller layout area [1]. One advanced type

of PCB called the Ball Grid Array (BGA) substrate (see Fig. 1), has been extensively

used to connect the solder ball array on Integrated Circuits (ICs) for electrica

conductivity in Surface Mount Technology (SMT) [2]. Because the linewidths and the

linespacings on BGA substrates are more sophisticated than conventional PCBs,

defects are hard to detect and they could seriously disable conductivity.

Generdly, the existing PCB inspection algorithms using machine vision can be

classified into three categories [3]: referential approaches, non-referential approaches,

and hybrid approaches. Referential approaches compare the test board image with the

defect-free board stored in the image database in a pixel-by-pixel or

window-by-window (i.e., a region composed by a pixel matrix) scheme to detect the

defective areas. They are time-consuming for matching operations, sensitive to noise,

and require large amounts of data storage for template images [4-6, 12-14].

Nonreferential approaches use design specification knowledge to verify small or

medium size defects. They perform successfully only for certain types of defects

(such as line widths, spacing violations, etc.). However, a serious defect such as the



circuit short could be falsely treated as the conduct path. Nonreferential approaches

are also error prone when rotational error is incurred [6-9]. Hybrid methods combine

referential approaches and nonreferential approaches to acquire al the benefits for

detecting various defect types in different sizes. Since both approaches can

complement each other, hybrid methods generally achieve better identification results

among the existing inspection systems. However, greater computation efforts are

expected with hybrid methods. Hybrid methods also inherently suffer from rotational

error and noise effects [10-11, 13].

In the past decade, wavelet transforms [15-17] became popular for localized

frequency analysis because it has the capability to decompose the input signal into

coarse-to-fine scales. That is, lower frequency oscillations are captured by coarse

scale for global analysis and higher frequency oscillations are captured by fine scale for

local analysis [18-20]. Therefore, the input signal with non-smooth or jump features over

a short interva of time (e.g. loca deviation) imply the occurrences of abnormality and

they are readily responded by larger magnitude of wavelet coefficients on the fine scales

of wavelet decomposition. For instance, wavelet function is practically feasible to detect

the boundary corners of an object by using the wavelet coefficient information [21-23].

In geometrical aspect, the boundary of BGA substrate conduct paths can be

considered as the combination of lines, arcs, and joints. The tangent values of



boundary points are constant on the lines, change smoothly on the arcs, and vary

rapidly on the joints. Thus, the 2-D boundaries of BGA substrate conduct paths are

initially transformed to a 1-D 6-s representation where 0 is the tangent angle as a

function of arc length s along the boundaries. More specifically, the tangent angle of a

boundary point is based on the eigenvector from the covariance matrix of the

neighboring boundary points over a small region of support [24]. Further, since ajoint

and a boundary defect can be respectively treated as single corner and multiple jag

corners (see Fig. 2), irregular tangent variations are expected for boundary corner(s).

Therefore, the 1-D 6-s representation for the boundary of BGA substrate conduct

paths is then decomposed by wavelets to detect these local anomalies by using

wavel et coefficient information.

In this study, four serious and common boundary defect types including open, short,

mousebite, and spur (see Fig. 2(b)-(e)) on BGA substrate conduct paths are detected by

the proposed wavelet-based approach. However, these four defect types are not

classified in this work. The proposed BGA substrate inspection algorithm does not

require prestored templates for matching process. Besides, this wavel et-based detection

for boundary defects is invariant to rotation so it is able to reduce the sengtivity of

angular error with respect to traditional PCB inspection methods. Therefore, this approach

is particularly suitable for various BGA substrate typesin small batch production because
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Fig. 1. Real BGA substrate conduct paths (right-upper side). () Original image
with a 25mm x 18mm field of view and 640 x 480 pixels resolution. (b) Binary
image of the BGA substrate shown in (a).

@ (b) (©) (d) ©

Fig. 2. (a) Joint (with Single corner). Boundary defects. (with multiple jag corners) on
BGA subgtrate conduct paths: (b) Open. (c) Short. (d) Mousebite.(€) Spur. (The white
Cross“+” represents adetected corner.)



it requires no precise alignment for the BGA substrates under inspection. Moreover,

since one circular pad connects one conduct path on BGA substrate, the junction shape

of conduct paths can be ignored to deal with in this research.

This paper is organized as follows: In section 2, the eigenvector of the covariance

matrix from a boundary segment for calculating the tangent angle of each boundary

point is presented. Furthermore, wavelet transform is also briefly discussed in this

section. The proposed algorithm based on the tangent representation and the wavelet

decomposition approximation in multiresolution to localize the BGA substrate conduct

path boundary defects is described and illustrated in section 3. Then, experimental

verification of the proposed method in various orthogonal wavelets is shown in section

4. Finally, the conclusion is given in section 5.



2. Covariance M atrices Enginvector and Wavelet Decomposition

2.1 Tangent representation by covariance matrices enginvector

The binary image of a BGA subdirate is pre-processed by boundary following [24] to
extract the X-Y coordinates of each boundary point along the conduct paths. Let n
sequentia digital points describe aboundary P,

P= {p. :(Xi ,yi), i=123,..., n}

where pi+1 s adjacent to p; on P. Further, let Ny(p;) denote a small boundary segment

centering on point p; over the region of support between points p;.s and pj+s for

some integer s, i.e.,
Nep) ={p li-s ] i+s}
Therefore, the covariance matrix M of aboundary segment N,(pi) is given by
m m
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. are the geometrical center of Ny(pi). The covariance matrix M isa2 X 2,



symmetric, and positive semidefinite matrix. The eigenvalues A; A, and the

eigenvectors E; and E; of the matrix M are obtained from following equations [25]:

m,
2
E. - € _ \/al_m11)2+m12
' ely al_mu
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_\/al_mn)z_'_mlz ]
m,
2
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Ao =(m +m,— \/(m11 —mzz)2 + 4m122 )
Where A; and A, are the eigenvalues corresponding to E; and E». The eigenvectors E;
and E, represent respectively the tangent (mgjor axis) and the normal (minor axis)
directions for point p; over the segment N,(pi). Therefore, the tangent angle for point
pi is simply defined as following:

tan(p;) = by _@yom,)

elx m 12

o(p) = tan? (1M )

12

In general, the magnitude of 6(p;) is between —90° and 90°. However, in order to
avoid the occurrence of “jump” for two adjacent boundary points due to quantization
noise, B(p;) is defined to be between 0 and 90° in this study. Fig. 3(a) shows a portion of
BGA substrate conduct paths with synthetic defects, there are 1470 boundary points on the

conduct paths. Number 1 denotes the starting boundary point and white arrow indicates the



boundary following direction. The defective regions labeled by capitd characters A-H in
Fig. 3(d) are extracted and the corresponding 1-D é-s curve diagrams are respectively
illugtrated in Fig. 3(b). Because the boundary defects are composed by multiple corners, the
1-D és curve of defects in Fig. 3(b) are ether sngular (eg. region A-D) or high
frequency oscillations in a short interva of boundary segment (e.g. region E-H). Moreover,
asmdl portion of defective BGA substrate conduct path in 15° and 30° orientations and the
corresponding 1-D @s curves are respectively show in Fig. 4@ and Fig. 4(b) to
demondtrate the rotational effect. Singularity and high frequency oscillations in 1-D é-s

remain for defective regions even they are in different orientations.
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Fig. 3. (8) A portion of BGA substrate conduct paths with synthetic defects, defective
regions are respectively labeled by capital characters A-H. (b) Left Sde- open defects (A,
B), short defects (C, D), mousebite defects (E, F), and spur defects (G, H). Right side- the
corresponding 1-D é-s curve diagrams.
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BGA substrade comduct paih with 14 and 3 ordentatisn

Ml

& 1nn 15 Hn 50 1.|-'|I
Boundary poind mamber g

Fig. 4. (&) A smdl portion of defective BGA substrate conduct path in 15° and 30°
orientations. (b) The corresponding 1-D é¢-s curvesfor ().

2.2 Wavelet decomposition

With the similar principle in Fourier transform, we can use alinear combination of
wavelet function to represent a signa f{r). Wavelets are generated by orthogonal
father wavelets ¢ and mother wavelets . Father wavelets represent the smooth and
low-frequency parts of a signal and mother wavelets represent the detail and
high-frequency parts of a signal. There are various wavelet bases such as Harr,
Daublets, Symmlets, and Coiiflets [15, 17]. They are different in continuity and

symmetry. The Harr wavelet is discontinuous and it has compact support length. The



wavelet basis “d4” represents Daublets with support length 4. The wavelet basis
“s12” (Symmlets with support length 12) is wider and smoother than the “s4” wavel et
basis. The number isrelated to the width and smoothness of the wavelet function [20].

For a continuous signal f{(#), it can be approximated by the orthogona wavelet
series. The approximation is called multiresolution decomposition (MRD) and
expressed as follows [20]:

[(#) = St)+Dy(t) +D31(2)+...D2(2)+D1(2)

where

SJ(t):;SJ,k(I)J,k (t) ) Dj(t) = ;dj,kqj],k (t)

IMOE 2_%¢[t_2—%kj v Wik (1) = 2_% W(t _2? k)

S5(¢) : the smooth part of the signal on the Jth scale

D;(?) : the detail part of the signal on the jth scale

J: the number of multiresolution scales

k : trandated parameter, k [1,%] , kisinteger.

n : the number of pointsto form the signal on ¢ domain

j : scaled parameter (j =1, 2, ..., J)

Sik : the wavelet coefficients for the smooth part of the signal on the Jth scale

d; : the wavelet coefficients for the detail part of the signal on the jth scale

s [0 (0) (O, dix~ [y, (0) f(O)d, sk, dixe R



In practice, the coarse scale components S; and D; mainly describe the lower

frequency oscillations of f{f) on wider ¢+ domain. Conversely, higher frequency

oscillations of f{¢r) on narrower ¢ domain are mainly captured by fine scale detail D-

and D; components. On fine scale, the wavelet coefficients corresponding to high

fluctuations are much greater than the wavelet coefficients on the smooth part of the

signal in magnitude. For instance, the 1-D &-s curve from Fig. 3(a) is used as a input

signa f(p;). The MRD for f{(p;) by Coaiiflets with support length 6 (e.g. c6 wavelet

basis) and 3 decomposition levels (e.g. J = 3) isdemonstrated in Fig. 5. In Fig. 5, the

coarse representation of f{p;) is globally captured by $3 and D3 scales, the singular and

high fluctuation parts of f(p;) are locally reflected by larger magnitude of wavelet

coefficients on D, and D; scales. In addition, if more decomposition levels are

employed (e.g. J = 5), the smooth parts of signal are roughly captured by S5 and Ds

scales. Middle fluctuation parts of signal are captured by D3, and D, scales. High

frequency oscillations are mainly captured by D, and D; scales. The impact of

different decomposition level number is shown in Fig. 6. However, the wavelet

coefficients on D, and D scales are identical regardless of the decomposition level

number. Moreover, owing to the inherent “end effect” of wavelet transform, larger

magnitude of wavelet coefficients on both ends for each decomposition level are

inevitable. The end effect should be ignored in further analysis.
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Fig. 5. The MRD for the 1-D @-s curve from Fig. 3(a) (f(p:)) by wavelet basis c6 and 3
decomposition levels.
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Fig. 6. The MRD for the 1-D @-s curve from Fig. 3(a) (f(p;)) by wavelet basisc6 and 5
decomposition levels.



3. The proposed approach for detecting the boundary defects

Since the defective regions such as open, short, mousebite, and spur on BGA
substrate conduct paths boundary are composed by multiple jag corners, they provides
irregular fluctuation behavior and singularity on 1-D é-s curve. However, the circular
pad on BGA substrate conduct paths may aso show multiple jag corners (see Fig. 7). A
circular pad may be misclassified as a defect. Therefore, we could localize a boundary
defect candidate (i.e. including true defects or circular pads) if a boundary point p; has
extremely large wavelet coefficients on D, or D; scaes in MRD. The wavelet
coefficients on D, and D; of a boundary point p; are denoted by WCD1(p;)) and
WCD2(pi), respectively. Then, the overall wavelet coefficients for the boundary
points on a potential defective region and the correlation coefficient matching with
circular pad are measured to eliminate the circular pads among the defect candidates.

In this manner, the true defects can be located.

0

Fig. 7. (8)(b)(c) Circular padscompasad by multiplejeg comers(Thewhiteaoss* +” represantsa
detected comer,). (d) Left side- diroular peds are extracted from Fig. 3(@). Right side- the
corresponding 1-D és curvediagrams
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(Fig. 7. Continued)

3.1 Locating the defects candidates

To distinguish the potential defects and non-defective regions on BGA substrate
conduct paths, a defect-free BGA substrate is used to collect the normal wavelet
coefficients from joints, lines, and digital quantization effect by MRD. The wavelet
coefficients of circular pads are excluded because they are potential defects. In addition,
since the wavelet transform has better locating ability and less noise effect at the
finest scale [21, 22], so the wavelet coefficients on D, scale are collected. The amount
of observation is greater than 10000 to estimate the population mean (tawcp1) and
standard deviation (owcpi) for the regular wavelet coefficients on D; scale. Traditiondly,
a flaw occurs when its specification is out of the control limits u+ 3o by quality control

skill. As mentioned, the wavelet coefficient of a defective region point is much larger in



magnitude with respect to the wavelet coefficient of a non-defective region point on D, and
D, scales. In order to avoid fase-darm error, a boundary point p; is defined as one of
potentia defective region points (denoted by pr) if WCD1(pm) is out of gwcp1 = 6owcepi.
By doing so, 99.999% of the non-defective regions are eiminated and the defect

candidates are surely located.

3.2 ldentifying true defects among defect candidates

From section 3.1, the potential defects are located by the wavelet coefficients on D;
scale and simple quality control technique. In this section, the defective candidates will
be classified into real defects and circular pads by measuring their energy vaue and
correlation coefficient matching with circular pad. The alias “energy” represents the
magnitude of the wavelet coefficients in absolute value for a segment of signa f{z). The
potential defective region points for a specified defect can be identified by expanding
from pm in forward and back directions of boundary following. Two adjacent points are
incorporated into the same region if the tangent angle difference in absolute value
between them is greater than 1°. The procedure is iterated until the above constraint is
violated. That is,

potential defectiveregion points={p; |i = s, s+1, ..., m1, m m+1, ..., t-1,t}

where

0(pi) —O(pi+1)| = 1° and [B(pi) — B(pi-1)[ 2 1° Vi



8(ps) —B8(ps1)| < 1° and |6(py) — O(Prea)| < 1°
The boundary points ps and p; are the start point and terminate point for this potential
defective region, respectively. Thus, the region of a potential defect can be identified.
The average energy for a defect candidate is abbreviated as uepc and determined as

follows:

3 |WCD1(p)|

i=s

t—-s+1

MEDC =

A defect candidate will be considered as a non-defective region if its uepc isless
than tawcp1 + 3owepa by quality control practice. Most of smooth circular pads as shown
in Fig. 7(a) and 7(b) are no longer potential defects during this stage because their yepc
are not able to exceed uwepi + 3owcepr However, circular pads with sharp corner(s) (see
Fig. 7(c)) remain defect candidates. The 1-D @-s curve for the boundary points of
circular pad with salient corner(s) shown in Fig. 7(c) is treated as “golden data set” to
measure the smilarity with the 1-D é-s curve of the rest of potential defective regions.
There are M boundary points in golden data set, the start point and terminate point are
respectively denoted by pgs and pis. The rest of defect candidate is recognized as a
circular pad if the correlation coefficient between its 1-D &-s curve and the golden data

set isgreater than 0.9. The correlation coefficient (p) is defined asfollows:

;G(DJ)O(DK)—nMJMk
k=1




where

0(p;): thetangent angle extracted from goldendataset j = 1,2, ..., n)

w and o : mean and standard deviation of 8(p;) (j =12, ..., N)

0(py): the tangent angle extracted from the rest of potentid defectiveregion(k=1,2, ...,n)
uk and ok : mean and standard deviation of 8(py) (k=1, 2, ..., Nn)

n=Min{M, N}

N: the number of boundary pointsin the rest of potential defective region
M >N, B =P =1 p=PeG =B =P u (=23 ..n2,n
N

If N> M, px=pas(k=1), px=pa(k=n), px = pim(ﬁxk) k=23, ...,n-2,n-1)
M

Pgs and pis : the start point and terminate point for the rest of defects candidates
Since al the circular pads in various shapes are distinguished, the rest of defect
candidates are identified as true defects. In short, a defect candidate is identified as a
true defect only if its pepc exceeds pwep1 + 3owcep1 and its correlation coefficient (p)
with golden data set is less than 0.9. The defects detecting procedure is summarized in

Fig. 8.
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Fig. 8. The summarized defect-detecting procedure



4. Experimental Results

Two experiments are conducted in this study. One evaluates the performance of
the proposed defect detection method and the other one verifies its rotation-invariant
property. A LED ring lighting source and a 25mm lens with 12mm extension ring are
used to increase the visibility of the BGA substrate conduct path. The defect detection
program is edited in the C language and executed on the vision package software
named “Optimas” using a personal computer.

In the first experiment, the bottom side of a real BGA substrate (shown in Fig. 9)
is captured as the test image sample to evaluate the defect detection capabilities of the
proposed agorithms. The test sample is captured in a 25mm x 20mm field of view,
which corresponds to 640 x 480 pixels in the image. There are 40 synthetic boundary
defects in the test sample, which includ 10 opens, 10 shorts, 10 mousebites, and 10
spurs. Both simple and complicated shape defects are included to fit the rea
inspection environment. The detection errors come from two sources. 1) False
acceptance (i.e.,, a normal region is detected as a defect), 2) False rejection (i.e.,
failure to alarm atrue defect). Moreover, various wavelet bases such as Haar, s4, s6,

S8, d4, d6, d8, c6, and c12 [20] must be incorporated to realize the effect on this



experiment. The population mean (wwcp1) and standard deviation (owcpi) for each

wavelet basis aforementioned is calculated in advance. The region of support for

covariance matrix eigenvector is 7 (i.e., s value =3) to reveal the local property of a

corner. The experimental result is summarized in Table 1. In Table 1, detection errors

occur from the wavel et bases s6, s8, d6, d8, and c12 because the longer support length

may over smooth the input signal. Shorter support length wavelet basis such as Haar

IS senditive to noise, it causes significant false acceptance errors. For a total of 40

defects in the test image, the wavelet bases s4, d4, and c6 are able to reach 100%

identification for boundary defects.

%//

Fig. 9. BGA substrate test sample image.



Table. 1. The defect detection result for wavelets s4, 6, S8, d4, d6, d8, c6, c12, and
Haar on D1 scaleat s = 3.

wavelet
basis s4 s6 s8 d4 d6 as c6 cl2 Haar

Wwer 'O. 000139 -0.00025 0.0002 0.000137 -00.00D@HM

G wep1 0.374 0.2004 0.46409 0. 368 0.2002 0. 3306

Detection

eror oLt

The

number 0 2 2 o 01002 2 05 00 06 8 3

of error

Ooccurs

Total 0 4 10 0 4 5 0 6 11

error | : False acceptance, error 11 : False Rglection

In the second experiment, images in varying orentation including 0°, 5°, and 15°

of a BGA substrate are used to verify the rotational effect. In practice, rotational

errors exceeding 15° may not exist in the real BGA substrate inspection. binary image

involves 40 synthetic defects containing 10 opens, 10 shorts, 10 mousebites, and 10

spurs (see Fig. 10(a)). The images in 5° and 15° rotations with respect to the original

0° image in Fig. 10(a) are shown in Figs. 10(b)-10(c), respectively. From the result of

the first experiment, only three effective wavel et bases s4, d4, and c6 are implemented

in the second experiment. The required parameters uwcep1 and owep: for wavelets 4,

d4, and c6 are the same as the first experiment for a given region of support s = 3. The

defect detection from the images in various orientations reach 100% identification as

well.

. 000C
0.

3
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Fig. 10. Binary images of a BGA substrate in varying orientations:
(a 0°, (b) 5°, (c) 15°.

Two real defective BGA substrates shown in Fig. 11(a) and Fig. 12(a) are used to

demonstrate the proposed approach in the real inspection environment. Fig. 11(a)

shows “short” and “spur” defects. Fig. 12(a) shows “open” defects. The imagesin 45°

and 90° orientations for Fig. 11(a) are respectively illustrated in Fig. 11(c) and Fig. 11(d).

The short defects and the spur defects are reliably detected, which are respectively

marked by white squares and circles dotted lines in the images. Each cross sign points out



the position with the largest absolute value of wavelet coefficient for each defect. With

the same practice for defects in Fig. 12(a), the open defects are detected and encircled by

white dotted lines in Fig. 12(c), and Fig. 12(d), respectively. The results reved that al

defects arereliably identified and well localized.



@ (c)

Fig. 11. (a) Redl defective BGA substrate with a short and a spur. (b) The binary image of
Fig. 11(a). (c) The image of Fig. 11(a) in 45°crientation. (d) The image of Fig.11(a) in
90°orientation. (The short and spur defects are respectively marked by white squares and
circles dotted lines.)



(b) (d)

Fig. 12. (a) Red defective BGA substrate with open defects. (b) The binary image of
Fig. 12(a). (c) The image of Fig. 12(a) in 45°orientation. (d) The image of Fig.12(a) in
90°arientation. (The open defects are encircled by white dotted lines)



5. Conclusion

In this study, the BGA substrate conduct path boundary defects such as open, short,

mousebite, and spur have been detected by a wavel et-based approach. The 2-D boundaries

of BGA subdrate conduct paths are initidly transformed in the 1-D é-s representation,

which is based on the eigenvetors of the covariance matrix of the boundary points over a

small region. Then, the 1-D é-s representation is decomposed by the MRD in wavelet

function to locate the boundary defect candidates. Further, true defects can be

identified among the potential defective regions by evaluating their energy and

correlation coefficients with a golden data set. The proposed approach avoids

ingpection errors resulting from board distortion and misalignment. It requires no

pre-stored templates, no template-matching procedure, and no training process. Therefore,

computationa time and data storage can be significantly reduced. With the decomposition

levels greater than 3 in MRD, the proposed method is rotation-invariant and can achieve

100% correct detection for the boundary defects on BGA substrates conduct paths by

using the wavel et bases with appropriate support length such as 4, d4, or c6 a D, scale.
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