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Abstract 
 

   The aim of this paper is to locate and classify boundary defects such as open, short, 
mousebite, and spur on Ball Grid Array (BGA) substrate conduct paths using machine 
vision. Boundary defects are detected by a boundary-based corner detection method 
using covariance matrix eigenvalues. Detected defects are then classified by 
discrimination rules derived from variation patterns of eigenvalues and the 
geometrical shape of each defect type. Real BGA substrates with both synthetic and 
real boundary defects are used as test samples to evaluate the performance of the 
proposed method. Experimental results show that the proposed method achieves 
100% correct identification for BGA substrate boundary defects under a sufficient 
image resolution. The proposed method is invariant with respect to the orientation of 
the BGA substrates, and it does not require pre-stored templates for matching. This 
method is suitable for various types of BGA substrates in small batch production 
because precise positioning of BGA substrates and the prestored templates are not 
necessary. 
 
Keywords: BGA substrate conduct path; Defect detection; Defect classification; 
Covariance matrix; Discrimination rules; Rotation-invariant 
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1. Introduction 

 

   In recent years, electrical components have tended to be smaller in size but to 

require more functionality and better quality performance. Therefore, the Printed 

Circuit Board (PCB) has evolved to provide more conduct paths and finer 

specification in a much smaller layout area [1]. One advanced type of PCB called the 

Ball Grid Array (BGA) substrate, as illustrated in Fig. 1, has been extensively used to 

connect the solder ball array on Integrated Circuits (ICs) for electrical conductivity in 

Surface Mount Technology (SMT) [2]. As linewidths and linespacings on BGA 

substrates become smaller, defects are hard to detect and they could seriously disable 

conductivity. 

   Generally, the existing PCB inspection algorithms using machine vision can be 

classified into three categories [3]: referential approaches [4-6], non-referential 

approaches [7-9], and hybrid approaches [10, 11]. Referential approaches are the 

earliest developed PCB inspection algorithms. They compare the test board image 

with the defect-free board stored in the image database in a pixel-by-pixel or 

window-by-window (i.e., a region composed by a pixel matrix) scheme to detect the 

defective areas. They are also known as template-matching techniques. In recent 

research, the primitives (including circular pad, single horizontal line, double vertical 
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lines, single slant lines, etc.) on PCBs are off-line trained. Then, they are incorporated 

with template-matching techniques for further classification using neural fuzzy [12, 

13] or statistical classifiers [14]. Referential approaches generally work well in 

identifying large size defects. However, they suffer from angular errors produced by 

board distortion during the fabrication process and rotational misalignment to the 

fiducial points on defect-free PCBs. Considerable shifts in the X-Y coordinates will 

result from minor angular errors. Furthermore, referential approaches are 

time-consuming for matching operations, sensitive to noise, and require large amounts 

of data storage for template images [6, 13]. 

   Nonreferential approaches use design specification knowledge to verify small or 

medium size defects. They perform successfully only for certain types of defects 

(such as line widths, spacing violations, etc.). However, a serious defect such as the 

circuit short could be falsely treated as the conduct path [13]. Nonreferential 

approaches are also error prone when rotational error is incurred [6]. 

   Hybrid methods combine referential approaches and nonreferential approaches to 

acquire all the benefits for detecting various defect types in different sizes. Since both 

approaches can complement each other, hybrid methods generally achieve better 

identification results among the existing inspection systems [13]. However, greater 

computation efforts are expected with hybrid methods. Hybrid methods also 



 3 

inherently suffer from rotational error and noise effects. 

   In geometrical aspect, the boundary of BGA substrate conduct paths can be 

considered as the combination of lines, arcs, and joints. The tangent directions of 

boundary points are constant on the lines, change smoothly on the arcs, and vary 

rapidly on the joints. Since a joint and a boundary defect can be considered 

respectively as single corner and multiple jag corners in this study, a corner detection 

approach based on the eigenvalue from the covariance matrix of the boundary points 

over a small region of support is implemented to localize the boundary defects. The 

eigenvalue patterns and the geometrical information of defective segments are 

collected to establish discrimination rules for the classification of defect types.  

   In this study, four serious and common boundary defect types including open, short, 

mousebite, and spur (see Fig. 2) on BGA substrate conduct paths are detected and 

classified. The proposed BGA substrate inspection algorithm does not require prestored 

templates, predefined primitives, and training process. Furthermore, the proposed 

approach is rotation-invariant since it is based on a rotation-invariant corner detection 

scheme. It reduces the sensitivity of angular error, compared with conventional PCB 

inspection algorithms. The proposed approach is particularly suitable for various BGA 

substrate types in small batch production because it does not require prestored templates 

and precise alignment of the BGA substrates under inspection. 
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Fig. 1. Real BGA substrate conduct paths (bottom side). (a) Original image with a 
25mm x 18mm field of view and 640 x 480 pixels resolution. (b) Binary image of 
the BGA substrate shown in (a). 

Fig. 2. Four serious and common boundary defects on BGA substrate: 
(a) Open. (b) Short. (c) Mousebite.(d) Spur. 

(a) 

(b) 

(a)               (b)                  (c)               (d) 
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   This paper is organized as follows: In section 2, the eigenvalues of the covariance 

matrix from a boundary segment are presented to detect corners and locate potential 

defects. The process for filtering noise on conduct path boundaries is also explained in 

this section. Then, the discrimination rules used for classifying four defect types (e.g. 

open, short, mousebite and spur) are described in section 3. Experimental verification of 

the proposed method is shown in section 4. Finally, the conclusion is given in section 5. 

 

2. Defect Detection  
 

2.1 Eigenvalues of covariance matrices 
 

   Since common defects such as open, short, mousebite and spur can be treated as 

multiple jag corners on BGA substrate conduct path boundary, an effective corner detection 

algorithm derived from the eigenvalue of the covariance matrix from a digital boundary 

segment is employed to locate joints and defects. This corner detection scheme has been 

validated to be faster, more precise, rotation-invariant, and scale-invariant with respect to 

other corner detection methods [15]. The binary image of a BGA substrate is pre-processed 

by boundary following [16] to extract the X-Y coordinates of each boundary point along 

the conduct paths. Let the sequential n digital points describe a boundary P,  

   P = {pi =(xi , yi), i = 1, 2, 3,…, n} 

where pi+1 is adjacent to pi on P. Further, let Ns(pi) denote a small boundary segment 
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centering on point pi over the region of support between points pi-s and pi+s for 

some integer s, i.e., 

   Ns(pi) = {pj | i-s ≦ j ≦ i+s} 

Therefore, the covariance matrix M of a boundary segment Ns(pi) is given by  
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ix  and iy  are the geometrical center of Ns(pi). The covariance matrix M is a 2 x 2, 

symmetric, and positive semidefinite matrix. The eigenvalues λL and λS of matrix M 

are obtained from following equations: 
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   The curvature information about a curve can be extracted from the smaller 

eigenvalue λS. For an ellipse object, the square root of λL and λS are the semi-major and 

semi-minor axial lengths of the ellipse, respectively.  The λS value is approximate to 
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zero when a point pi is on a straight line or on a flat curve. The smaller the radius of a 

circle, the larger the λS value obtained. Likewise, the sharper the corner, the larger the 

λS value that results. The λS value of a corner point on the boundary segment is a local 

maximum. Away from the corner, the λS values of the boundary points decrease 

gradually. Since the boundary defects of short, open, mousebite, and spur are 

constructed by multiple jag corners, each of them should ideally result in multiple 

peaks in 1-D λS diagram. Therefore, the 1-D λS waveform pattern is utilized to locate 

the joint or defect on the boundary of BGA substrate conduct paths. Fig. 3(a) shows a 

portion of BGA substrate conduct paths with synthetic boundary defects. The 

numbers shown in Fig. 3(a) represent the boundary number pi. The corresponding λS 

values as a function of the boundary points are illustrated in Fig. 3(b). In Fig. 3(b), 

consecutive zero or near-zero λS values are respectively generated for the points on 

straight lines and circular arcs. The peaks in 1-D λS waveforms in Fig. 3(b) result 

from joints, boundary noise, and defects. For example, a mousebite is constructed 

between boundary points 133-152 in Fig. 3(a) and its corresponding jag waveform 

can be located in Fig. 3(b).)  

2.2 Filtering boundary noise and locating defect candidates 

   Owing to the effect of digital quantization and lighting, noisy boundary points 

may result in significant non-zero λS values. In this section, a specific λS value is 
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selected as a threshold to distinguish the noisy segments and joints on the boundary of 

BGA substrate conduct paths. Noisy boundary points could result in false alarms 

during inspections. They can be filtered out if their λ S values are less than a 

specified threshold. Generally, the λ S values of joints are ensured to exceed this 

specified threshold.  

   To find the λ S threshold, the intraset-interset distance cluster algorithm [17] is 

employed to divide the noisy segments and joints on the boundary of BGA substrate 

conduct paths into two separate groups. The boundary points connecting the line and 

circular pad may result in consecutive non-zero λS values (e.g. points 84-95 and 

376-388 in Fig. 3(b)). These intersection points perform similarly with the noisy 

segments in terms of the magnitude of λS. Therefore, the intersection points are also 

treated as boundary noise for convenience. A defect-free BGA substrate is utilized to 

collect the λS data of the joints and boundary points for clustering. A joint is 

represented as the waveform with a single peak and the noisy boundary segment 

could have more than one peak in the 1-D λS waveform. In order to locate each 

waveform of joint and noisy segment, the λS of a boundary point pi is assigned to zero 

if the λS values of three consecutive points pi-1, pi and pi+1 are all less than 

(µλ+0.5σλ). In this manner, the λS values of boundary points between the waveforms 

of joints and noisy segments are zero. The mean (µλ) and standard deviation (σλ) for 
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the λS values of all points on the defect-free BGA substrate image are first computed. 

Then, the maximum λS value in the ith waveform of noise segment or joint is 

extracted and denoted by λS
*(i). If there are totally N joints and noisy boundary 

segments on BGA substrate conduct paths, the λS
*(i) (e.g. i = 1,2, …, N) values are 

initially sorted in ascending order. That is,  

   λS
*(1) ≤ λS

*(2) ≤ λS
*(3) ≤ … ≤ λS

*(N) 

By the intraset-interset distance cluster algorithm, given a cluster with K samples, the 

mean square distance from sample i to the other samples in the cluster (D( ix )) is 

defined as: 

   D( ix )= )(1
1

2 ji

j
x,xd

K
K
∑
=
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where N1 is the number such that λS
*(N1) gives the specified threshold ( 2 ≤ N1≤ N-2 ) 

and N2 = N - N1. 

The interset distance (Dinterset) between the noise cluster and the joint cluster is 

defined similarly: 
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The measure of Q (λS
*(N1)) is computed as: 

   Q (λS
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   Therefore, the λS
*(N1) reaches the minimum of Q (λS

*(N1)) and is defined as the 

best threshold to distinguish between the boundary noise and joints on the BGA 

substrate conduct paths. The determined threshold λS
*(N1) is abbreviated as Tλ. Since 

a boundary defect is constructed by multiple corners, the following conditions for 

BGA substrate conduct paths are concluded. 

 
 

   The λS of a boundary point pi in Fig. 3(a) is assigned to zero if the λS values of pi-1, 

pi and pi+1 are all less than (µλ+0.5σλ). The Fig. 3(b) is therefore updated to Fig. 3(c). 

In Fig. 3(c), every defect candidate can be located easily if the λS
* value in its 

waveform is greater than Tλ. The defect candidates are labeled by character “A” as 

shown in Fig. 3(c). Then, we can concentrate on these defect candidates for further 

classification. 

 

 

 

 

a noisy segment, if its λS
*≤ Tλ 

a joint or a defect, if its λS
*

 > Tλ 

{
A 1-D λS

 waveform represents 
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3. The Discrimination rules for Defect Classification 

Fig. 3. (a) A portion of BGA substrate conduct paths with synthetic defects. (b) The 
corresponding 1-D λS diagram with the region of support s=5 (c) Every Defect candidate 
labeled by char. “A” is located by its λS

* value and threshold Tλ . 

(b) 
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(Fig. 3. Continued) 
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3. Discrimination Rules for Defect Classification 

 

   Potential defects can be effectively detected using the corner detection scheme 

described in the previous section. However, it’s not easy to classify these defect 

candidates into joint, open, short, mousebite, or spur in one single approach. The 

attributes regarding the λS waveform, the λS
* value, geometrical property, and gray 

value information of a defect candidate are extracted for classification purposes. The 

joints on BGA substrate conduct paths give single-peak waveform (see Fig. 4(a)), 

whereas defects such as short, mousebite, and spur are represented by multiple-peaks 

waveforms in the 1-D λS diagram (see Fig. 4(c)-4(d)). Ideally, an open defect usually 

has two corners close to each other. It is possibly represented by a single-peak 

waveform with extremely large λS
* value (Fig. 4(e)) if the width of conduct paths is 

relatively too small with respect to the image resolution. Likewise, boundary defects 

such as mousebite, short, and spur may also give single-peak waveforms due to 

insufficient image resolution or inappropriate regions of support. For instance, a 

wide-shallow mousebite shown in Fig. 5(a) may resemble two separate joints. In Fig. 

5(b), a long bridge (long distance short) may be considered as two closely sharp joints. 

A high-steep spur illustrated in Fig. 5(c) could be detected as a single sharp joint. 

Although the above problems indicated in Fig. 5(a)-5(c) can be solved by using larger 
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Fig. 4. The number of peak(s) in 1-D λS waveform, the dividing points (pb and pt), vectors 
ar and b

r
, and midpoint location for each feature type: (a) Joint. (b) Open. (c) Short. (d) 

Mousebite. (e) Spur. (The features in Fig. 4(a)-4(e) are extracted from Fig. 3(a).) 
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regions of support (i.e. larger s values) to merge two false joints or by using larger image 

resolution (image magnification), false alarms may occur on non-defective regions 

simultaneously. Therefore, the defect type can not be identified simply by depending on the 

peak counts in its waveform. Three additional attributes are acquired for robust 

classification. 

   First of all, by statistical quality control, defects such as open and short involve 

distinctly sharp corners, and their λS
* values (local maximum in a waveform) will be greater 

than the upper control limit (e.g. µλ+3σλ). Further, since mousebite and spur involve at least 

two jag corners, the first two largest λS values (e.g. 1st λS
* and the 2nd λS

* shown in Fig 

4(d)-4(c) ) from their peaks on the waveform must be greater than the selected threshold Tλ. 

   Secondly, if the waveform of a defect candidate is composed by a set of sequential 

points starting from pb and terminating at pt , this boundary segment is denoted as FS and 

defined as follows:  

Fig. 5. (a) Shallow-wide mousebite. (b) A short with long bridge. (c) 
High-steep spur. (d) Huge mousebite on circular conduct path. 

(a)               (b)              (c)                  (d) 
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   FS = {pi | pi > (µλ+0.5σλ), ∀ pi = pb, pb+1, ... , pt-1, pt}  

The boundary points pb and pt are called dividing points for this defect candidate (see Fig. 

4(a)-4(e)). In Fig. 4(a)-4(e), two vectors ar  and b
r

 are used to describe the boundary- 

following directions around a joint or a defect. The terminal point of vector ar  is pb and the 

initial point of ar  is pb-s, which is s points away from pb in the backward 

boundary-following direction. Vector b
r

 starts at point pt and terminates at pt+s, which is a 

distance of s points away from pt along the forward boundary-following direction. The angle 

between ar  and b
r

 is denoted by θ ,  and it is computed as follows: 

     θ = cos-1

ba
ba
rr

rr
•  

where ar= [xb - xb-s , yb - yb-s], b
r

= [xt+s - xt , yt+s - yt] 

    pb = (xb, yb) , pb-s = (xb-s , yb-s), pt = (xt, yt) , pt+s = (xt+s , yt+s) 

      s = the region of support. 

The angle θ is greater than 3π/4 for the defects open and short. Conversely, it will be 

less than 3π/4 for the defects mousebite and spur. However, as shown in Fig. 5(d), 

the angle θ for a huge mousebite or spur on a circular conduct path may be greater 

than 3π/4. If the angle θ of a defect is greater than 3π/4, points pb and pt must be 

redefined to eliminate the ambiguity. Therefore, by tracing forward from the original 

pb, the new starting point pb is selected to be the first position at which λS is greater 

than µλ+3σλ. If no such point is met, the new pb is s points apart from the original pb 
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in the forward direction. The new termination point pt is located in a similar way as pb 

but in the backward direction. The original pb and pt will be replaced by the new pb 

and pt to define the directional vectors ar  and b
r

. Then, the angle θ is recalculated 

and used as one of the attributes for describing this defect candidate.  

   Finally, the midpoint on the line segment connecting pb and pt will fall on the 

background (which has a gray value of 255 in 8-bits intensity) if the defect is open 

(see Fig. 4(b)). In case it is a short (see Fig. 4(c)), the midpoint on the line segment 

connecting pb and pt will fall on the conduct path (which has a gray value of 0). 

Defects such as mousebite and spur can be distinguished with the same practice (see 

Fig. 4(d) and 4(e)). The gray value of midpoint can be either 0 or 255 for a joint. 

   Thus, the number of peaks in the waveform, the largest λS
 value(s), the angle θ, 

and the gray value of the midpoint for defect candidates are collected for establishing 

the discrimination rules to classify them into joint, open, short, mousebite, and spur. 

The aforementioned discrimination rules are summarized in Table 1. Each defect type 

is classified by a specific set of discrimination rules. The detailed classification 

procedure is expressed as a flow diagram illustrated in Fig. 6. The proposed 

classification procedure does not rely on the pre-stored templates and training process 

to accomplish the classification task. A brief description for locating and classifying 

BGA substrate boundary defects is summarized in Fig. 7. 
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Item                     Discrimination rule 
 
  A            The number of peaks = 1 and λS

* > Tλ 
  B            The number of peaks 

 ≥ 2 and 1st λS
* > Tλ and 2nd λS

* > Tλ
 

  C             Tλ < λS
*
 < (µλ+3σλ) (for single-peak waveform) 

  D             λS
*
 ≥ (µλ+3σλ) (for single-peak waveform) 

  E             Both 1st λS
*
 and 2nd λS

*
 ≥ (µλ+3σλ)  

  F             Angle θ  between ar  and b
r

 ≥ 3π/4    
  G             Angle θ  between ar  and b

r
< 3π/4  

  H             Gray value of the midpoint = 0 
  I              Gray value of the midpoint = 255 

Table 1. The discrimination rules for defect classification 

Defect Candidates 

Discrimination rule A 
    is satisfied 

Rules G  
and I are 
satisfied 
 
 Spur 

Rules D, F 
and H are  
satisfied 
  
 Short 

Rules D, G 
and I are  
satisfied 
  
 Spur 

Rules E, F 
and I are  
satisfied 
  
 Open 

Rules  G 
and H are 
satisfied 
 
Mouse- 
 bite 

Discrimination rule B 
     is satisfied 

Rules D, F 
and I are 
satisfied 
  
Open 

Fig. 6. The procedure for classifying the defect candidates into joint, open, short, 
mousebite, and spur. 

Rules E, F 
and H are  
satisfied 
  
 Short 

Rule C is 
satisfied 
 
 
Joint 
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Boundary-following to 
obtain (xi, yi) of each 
boundary point pi 

Computing λS for 
every boundary point 

Assigning the λS of pi to zero  
if the λS of pi-1, pi, and pi+1 are 
all less than (µλ+0.5σλ) 

Determining the 
threshold Tλ off-line 
by intraset-interset 
clustering algorithm 

Locating every defect candidate  
by its λS

* and the threshold Tλ 

Extracting the attributes from each defect candidate in 
following sequence: 
• the number of peaks in its waveform 
• the λS

 value of each local peak in its waveform 
• the dividing points pb and pt 
• angle θ between ar and b

r
 

  (if θ ≥ 3π/4, redefine pb and pt) 
• gray value of the midpoint on the line joining pb and 
pt 

Fig. 7. The summarized procedure to locate and classify boundary defects 

Joints or boundary defects 

Defect detection 

Defect classification 

Verifying each specific set of 
discrimination rules indicated in 
Fig. 6 

Open Short Mousebite Spur 
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4. Experimental Results 

 

   Two experiments are conducted in this study. One evaluates the performance of 

the proposed defect detection and classification method, and the other one verifies its 

rotation-invariant property. A LED ring lighting source, 25mm lens, and 12mm 

extension ring are used to increase the visibility of the BGA substrate conduct path. 

The defect detection and classification program is edited in the C language and 

executed on the vision package software named “Optimas” using a personal computer. 

   In the first experiment, the upper side, the bottom side, and the left-bottom side of a 

real BGA substrate shown in Fig. 1(a) are captured as test image samples to evaluate 

the defect detection capabilities of the proposed algorithms. Each sample image is 

captured in a 25mm x 20mm field of view, which corresponds to 850 x 640 pixels in 

image. In Figs. 8(a)–8(c), one hundred synthetic boundary defects are created on 

every sample. Each sample contains 20 opens, 20 shorts, 30 mousebites, and 30 spurs. 

Both simple and complicated shape defects are included to fit the real inspection 

environment. The detection errors come from three sources: 1) False alarm (i.e., a 

normal region is detected as a defect), 2) Fail to alarm (i.e., failure to alarm a true 

defect), and 3) True alarm with wrong defect types (i.e., a true defect is detected but 

the type is misclassified.). 
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             (a) 

 

 

 

 

 

             (b) 

 

 

 

 

 

             (c) 

 

 

 

 

 

Fig. 8. BGA substrate test sample images. (a) Top side – sample 1. (b) Bottom side – 
sample 2. (c) Left-bottom side – sample 3. 
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   In real BGA components inspections, image magnification is the first and most 

important step to obtain accurate measurement [18]. Initially, the image of 850 x 640 

pixels contains a 25x20mm2 physical region so that better resolution is obtained for 

describing the detail of conduct paths. Furthermore, different regions of support may 

affect the structure of λS waveforms. Various s values must be incorporated to realize 

the effect on this experiment. The predefined threshold Tλ, the mean µλ, and the 

standard deviation σλ of a defect-free BGA substrate in a given resolution are 

calculated off-line. The resulting number of detection errors for each sample images 

by different s value (s = 5, 6, 7, 8, 9, 10) is shown in Table 2.  

   In Table 2, the number of detection errors is 10 and no false alarm is generated out 

of a total of 300 synthetic defects in three sample images if s is set to 7. This reaches a 

96.66% correct identification. More specifically, 9 of the 10 detection errors are "fail 

to alarm," which are all shallow-wide mousebites as shown in Figs. 9(a)–9(c). The 

other detection error is "true alarm with wrong defect types," which is a mousebite 

right on the circular pad joint (Fig. 9(d)). These detection errors appear repeatedly in 

other s values. To achieve 100% correct identification, the resolution for these subtle 

defects should be enlarged. Therefore, we magnify the test images up to 1.1X, 1.15X, and 

1.25X and perform the same detection procedure. The parameters such as Tλ, µλ, and σλ 

will vary since different resolutions are involved. In Table 3, a 100% correct identification 
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 (a)                                 (c)  

 (b)                                 (d)               

 

 

Table 2. Defect detection and classification results from each sample image by 
different s values. 

Fig. 9. (a) One “fail to alarm” error from sample 1. (b) Four “fail to alarm” errors 
from sample 2. (c) Four “fail to alarm” errors from sample 3. (d) One “true alarm 
with wrong defect type” error from sample 2. 

Detection error * I: false alarm, II: fail to alarm, and III: true alarm with wrong defect types 

Region of support 11
(s =5)

13
(s =6)

15
(s =7)

17
(s =8)

19
(s =9)

21
(s =10)

0.000197 0.00024 0.000289 0.000362 0.000405 0.00048

0.000218 0.000305 0.0004 0.000603 0.000623 0.00075

              0.000503 0.000666 0.000839 0.000982 0.00116 0.00136

Detection  error*  I      II      III  I      II      III  I      II      III  I      II      III  I      II      III  I      II      III

Sample1 (Fig. 8(a)) 2      2       2 0      2        0 0       2        0 0       2       3 2      4        6 3       6       4

Sample2 (Fig. 8(b)) 4      5       0 0      5        1 0       3        1 0       6       2 1      7        2 2      14      1

Sample3 (Fig. 8(c)) 3      5       1 0      6        0 0       4        0 1       8       3 1     10       6 3      10      8

Total 24 14 10 25 39 51

λµ

λσ

λT

Detection error * I: false alarm, II: fail to alarm, and III: true alarm with wrong defect types 

Table 3. Defect detection and classification results from each sample image
(1.25X magnification) by different s values. 

Region of support 11
(s =5)

13
(s =6)

15
(s =7)

17
(s =8)

19
(s =9)

21
(s =10)

0.000326 0.00038 0.00043 0.000485 0.000547 0.000615

0.000267 0.000334 0.00042 0.000524 0.000639 0.000761

0.000753 0.000914 0.000839 0.00127 0.00144 0.0016

Detection  error*  I      II      III  I      II      III  I      II      III  I      II      III  I      II      III  I      II      III

Sample1 (Fig. 8(a)) 1      0      1 0      0       0 0      0       0 0      0        1 0       1       3 0      2       3

Sample2 (Fig. 8(b)) 1      2      0 0      1       0  0      0       0 0      2        1 0       2       0 1      7       0

Sample3 (Fig. 8(c)) 1      1      0 0      1       0  0      0       0 0      2        1 0       4       2  0     4        3

Total 7 2 0 7 12 17

λµ

λσ

λT
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is accomplished in 1.25X magnification with the s value of 7. The performances of 

other s values are also improved significantly in the 1.25X images. 

   In the second experiment, various angled images including 0°, 1°, 2°, 3°, 4°, 5°, 

10°, 15°, 25°, 45°, 90°, and 135° of a BGA substrate are used to verify the rotational 

effect. The 0° binary image involves 40 synthetic defects, containing 10 opens, 10 

shorts, 10 mousebites, and 10 spurs (see Fig. 10(a)). The images in 5°, 15°, 25°, 45°, 

90°, and 135° rotations with respect to the original 0° image in Fig. 10(a) are shown 

in Figs. 10(b)-10(g), respectively. The required parameters of Tλ, µλ, and σλ for each 

rotated image are the same as the first experiment for a given region of support (e.g. s 

= 7). The defect detection results from the images in various orientations are 

illustrated in Table 4. 

   It can be seen from Table 4 that the proposed method in this study is 

rotation-invariant in the range of 1°-15°, in which no detection errors are generated. 

In practice, rotational errors exceeding 15° may not exist in the real BGA substrate 

inspection. In Fig. 11(a), a mousebite and a spur are identified successfully on the 0° 

image. However, for images in larger rotational angles, the mousebite and the spur are 

undetected due to the digital quantization effect. More specifically, the mousebite 

becomes shallower to incur the “fail to alarm” error, the sharp spur becomes smoother 

and is misclassified as a mousebite on the 25° image (see Fig. 11(b)). The detection errors  
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Fig. 10. BGA substrate binary images in varying orientations for verifying the 
rotational effect (a) 0°, (b) 5°, (c) 15°, (d) 25°, (e) 45°, (f) 90°, (g) 135°. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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Rotational               Detection 
angle                     Error*      
                      I     II    III 

   0°                  0     0     0 

   1°                  0     0     0 

   2°                  0     0     0 

   3°                  0     0     0 

   4°                  0     0     0 

   5°                  0     0     0 

  10°                  0     0     0 

  15°                  0     0     0 

  25°                  0     1     1 

  45°                  0     1     0 

  90°                  0     0     0 

 135°                  0     1     1 

Fig.11. (a) A mousebite (left) and a spur (right) are identified correctly on the 
0° image. (b) The “fail to alarm” error on the mousebite (left) and the “true 
alarm with wrong defect type” error on the spur (right) in 25° image. (c) The 
“fail to alarm” error on the mousebite in 45° image. (d) The “fail to alarm” 
error on the mousebite (left) and the “true alarm with wrong defect type” error 
on the spur (right) in 135° image. 

Table 4. Detection error incurred by varying  
rotational angles on BGA substrate. 

Detection error * I: false alarm, II: fail to alarm,  
and III: true alarm but wrong defect types 

(a)                                (c)  

 (b)                                (d) 
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respectively occur on the same defective regions for 45°and 135° images (see Figs. 

11(c)–11(d)). Following the same practice as the first experiment, we magnify the 

images of larger rotational angles up to 1.25X and repeat the detection procedure. The 

resulting detection errors from 1°-135° images are completely eliminated. Thus, we 

have validated this proposed approach to be a rotation-invariant one in BGA substrate 

inspection under the circumstance of sufficient image resolution.  

   Two real defective BGA substrates shown in Fig. 12(a) and Fig. 13(a) are used to 

demonstrate the proposed approach in the real inspection environment. The images in 

45° and 90° orientations for Fig. 12(a) are respectively illustrated in Fig. 12(c) and Fig. 

12(d). The short defects and the spur defects are reliably detected. They are respectively 

marked by white squares and triangles dotted lines. Each cross sign points out the 

position with the largest λS value on each defect. The orientations of 45° and 90° are also 

executed for BGA substrate shown in 13(a). The open defects are encircled by white 

dotted lines in Fig. 13(a), Fig. 13(c), and Fig. 13(d), respectively. The results reveal that 

all defects are reliably identified and well localized.  
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(a)                                  (c) 

 

 

 

 

 

 

 

 

 

(e)                                  (g) 

 

 

 

 

 

 

(b) (d) 

Fig. 12. (a) Real defective BGA substrate with a short and a spur. (b) The gray level 
image of Fig. 12(a). (c) The image of Fig. 12(a) in 45°orientation. (d) The image of 
Fig.12(a) in 90°orientation. (The short and spur defects are respectively marked by white 
squares and triangles dotted lines.)   
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                                (c) 

 

 

 

 

 

 

 (d) 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Fig. 13. (a) Real defective BGA substrate with open defects. (b) The gray level image of 
Fig. 13(a). (c) The image of Fig. 13(a) in 45°orientation. (d) The image of Fig.13(a) in 
90°orientation. (The open defects are encircled by white dotted lines) 
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5. Conclusion 

 

   In this study, the BGA substrate conduct path boundary defects of open, short, 

mousebite, and spur have been initially located by eigenvalues λS derived from the 

covariance matrix of the boundary points over a small region. Then, every boundary 

defect is classified by the discrimination rules, which are based on the λS waveform 

pattern and geometrical attributes of each defect type. The proposed approach avoids 

inspection errors resulting from board distortion and misalignment. It requires no 

pre-stored templates, no template-matching procedure, and no training process. Therefore, 

computational time and data storage can be significantly reduced. The experimental 

results shows that the proposed method is rotation-invariant and can achieve 100% 

correct identification for BGA substrates conduct paths inspection if the region of support 

is set to 7 under image resolution of approximately 40 pixels / mm.  
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