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Defect detection in colored texture surfaces using 

Gabor filters 

 

 

ABSTRACT 

 

    This paper presents a Gabor filtering approach for automatic inspection of 

defects in colored texture surfaces.  It can simultaneously measure both chromatic 

and textural anomalies in an image.  Two chromatic features derived from the 

 color space are used to form a complex number for color pixel 

representation.  The proposed method is based on the energy response from the 

convolution of a Gabor filter with the color image characterized by two chromatic 

features in the form of a complex number.  The Gabor filtering process converts the 

difficult defect detection in a colored texture image into simple threshold 

segmentation in the filtered image.  Experimental results from a number of colored 

texture surfaces such as textile fabric, wood and tile have shown the effectiveness of 

the proposed method. 
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1. INTRODUCTION 

 

1.1 Automated Visual Inspection 

 

Image analysis techniques are being increasingly used to automate industrial 

inspection.  The manual activity of inspection can be subjective and highly 

dependent on the experience of human inspectors.  For defect inspection in 

complicated material surfaces, color and texture are two of the most important 

properties.  Detecting various classes of defects in colored texture images is difficult 

using conventional gray-level imaging techniques.  In this paper, a Gabor filtering 

scheme is proposed to tackle the problem of defect detection in colored texture 

images.  The proposed scheme can simultaneously measure both color and textural 

anomalies in an image. 

 

In automatic surface inspection, small surface defects which appear as local 

anomalies embedded in a homogeneous texture must be reliably detected.  The class 

of homogeneous texture presents a self-similar pattern everywhere in the image.  

Many industrial materials such as textile fabrics and machined surfaces fall in this 

category.  The proposed method can be applied to both structural and statistical 

textures.  However, the textured surfaces to be inspected must contain periodical, 

repetitive patterns.  

 

The inspection task in this paper is classified as qualitative inspection [1] which 

involves detecting non-quantitatively measurable but obvious faults such as scratches, 

stains, shedding of fibers and other ill-defined anomalies.  A defect is usually small 

in size with respect to the imaged area, and breaks the homogeneity of the textural 
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pattern.  Many of these unanticipated defects with color and structural anomalies 

cannot be described by explicit measures, making automatic defect detection difficult.  

 

1.2 Previous Work 

 

Most of the defect detection systems are carried out in gray-level images.  

Thresholding or edge detection techniques are employed to detect defects in 

nontextured surfaces such as glass panels [2], sheet steel [3], and uniform web 

materials [4].  Defects in these images can be detected easily because commonly 

used measures usually have very distinct values.  For complicated textured surfaces 

in gray-level images, gray-level co-occurrence matrix methods [5, 6] in the spatial 

domain and Fourier transform methods [7] in the frequency domain are commonly 

used to describe textural features.  

 

The Fourier-based methods characterize the spatial-frequency distribution of 

textured images, but they do not consider the information in the spatial domain and 

may overlook local deviations.  In the recent past, Gabor filters were well recognized 

as a joint spatial/spatial-frequency representation for analyzing textured images 

containing highly specific frequency and orientation characteristics [8].  Gabor 

filter-based methods have been successfully applied to texture classification and 

segmentation [9, 10].  Two main methods have been proposed in the literature for 

selecting Gabor filters: the filter-bank approach and the filter-design approach [11].  

In filter-bank approaches [12-14], the input image is generally filtered by a family of 

Gabor filters tuned to several resolutions and orientations.  The Gabor filter bank is 

usually reported with frequency bandwidth in octaves and orientation bandwidth in 45 

degrees.  These limited parameter values are not necessarily optimal for a particular 
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processing task.  In filter-design approaches [9, 15-17], only one or a few filters for a 

particular application are designed in an effort to reduce the computational burden of 

filter-bank approaches.  The selection of the best filters is generally based on a priori 

knowledge of the textural properties derived from a spectral Fourier analysis.  Clausi 

and Jernigan [18] gave a thorough comparison of various Gabor filter 

implementations for texture analysis. Classical Gabor filters consider only the 

gray-level information in a textured image.  They do not exploit chromatic properties 

of textures and may fail in defect detection.  

 

Traditional texture analysis methods are inappropriate for colored texture 

images because they ignore chromatic information.  Since color images contain more 

information per pixel, color machine vision has been an active field during the last 

few years in agricultural applications such as color inspection of potatoes [19] and 

grading of oranges [20], and in industrial inspection applications such as ceramic tiles 

[21], granite [22], leather [23], cotton fiber [24], integrated circuits [25], and LCD 

panels [26]. 

 

In the analysis of color images, the description of image regions has been 

performed mainly using color histograms [21, 27].  However, color histograms lose 

the spatial information of a texture, and are not sufficient to detect small local 

variation in defects.  More sophisticated color imaging methods have been 

developed for colored object recognition, colored texture classification and 

segmentation.  Healey and Slater [28] used moments of color distributions for 

colored object recognition.  Gevers and Smeulders [29] analyzed and developed a set 

of color features which are invariant to changes in viewing direction, object geometry 

and illumination.  They achieved object recognition by histogram matching of the 
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selected color features.  Suen and Healey [30] used color features defined by the 

parameters of conditional Markov fields, and employed the Mahalanobis distance to 

classify the color texture classes.  Van de Wouwer [31] studied the colored texture 

classification problem using the wavelet multiresolution decomposition.  Texture 

features are given by wavelet covariance signatures which contain the energy of each 

color plane and the cross correlation between different color planes.  Zugaj and 

Lattuati [32] presented an approach for color image segmentation by a fusion between 

both edge pixels and region-growing images. Campadilli et al. [33], and Verikas et al. 

[34] addressed the color image segmentation problem using neural networks.  Liu 

and Yang [35], and Panjwani and Healey [36] presented Markov random field models 

for colored texture segmentation.  The model parameters were estimated using a 

maximum pseudo-likelihood scheme or a relaxation process. 

 

1.3 Overview of the Proposed Scheme 

 

Traditional color imaging methods are more concerned with the problem of 

image segmentation than with problems arising in defect inspection in colored texture 

surfaces, where local defects exhibit no distinct textural properties.  This paper 

considers the issue of designing a single Gabor filter to detect unpredictable defects in 

a colored texture surface.  Classical Gabor filtering schemes only take into account 

the gray levels of pixels.  The proposed method incorporates the Gabor filter with 

chromatic features of pixels to detect both color and structural anomalies in a 

periodically textured image.  Owing to the inherent limitation of Gabor filtering, the 

orientation of a structural texture surface under inspection is assumed to be aligned or 

known in advance. 
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In this study, two brightness-invariant chromatic features derived from the 

 color space [37] are used to form a complex number for colored 

pixel representation.  The  transform is given by  

*** baLCIE −

*** baLCIE −
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where X, Y and Z are transformed from the RGB space by 
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nX ,  and  are the tristimulus values of the reference white, and can be 

derived from the XYZ space with (R, G, B) = (255, 255, 255) in an 8-bit display 

system.  

nY nZ

*L  is a correlate to perceived lightness.  The  and  dimensions 

correlate approximately with red-green and yellow-blue chroma perceptions. 
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The proposed color Gabor filtering scheme convolves a Gabor filter with the 

color image characterized by two chromatic features in the form of a complex number.  

The design objective for the best Gabor filter is based on the minimization principle 

that finds the minimum energy response of a faultless textured pattern in the training 

process.  By defining a non-negative response amplitude, each regular texture region 

defined in a neighborhood window will have the response amplitude close to zero, 

and any irregular defect region will have a distinctly high response amplitude in the 

filtered image.  The proposed scheme then converts the difficult defect inspection in 

a colored texture image into simple threshold segmentation in the filtered image. 
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This paper is organized as follows: Section 2 first describes the classical Gabor 

filtering scheme in gray-level images.  The proposed color Gabor filtering scheme 

that incorporates the classical Gabor transform with two chromatic features is then 

discussed.  Section 3 presents the experimental results from a variety of colored 

textures including textile fabric, wood and tile surfaces.  The paper is concluded in 

Section 4. 

 

2. GABOR FILTER DESIGN 

 

2.1 Gabor filtering in gray-level images 

 

The 1-D Gabor function was first defined by Gabor [38], and later extended to 

2-D by Daugman [8].  A 2-D Gabor filter is an oriented complex sinusoidal grating 

modulated by a 2-D Gaussian function, which is given by  

 )]sincos(2exp[),(),(,, θθφπσθφσ yxjyxgyxG +⋅=  (1) 

where  

 ),( yxgσ ]2/)(exp[
2

1 222
2 σ

πσ
yx +−= , and 1−=j  

The frequency and orientation of the span-limited sinusoidal grating are given 

by φ  and θ , respectively.   is the Gaussian function with scale parameter ),( yxgσ

σ .  In this study, the symmetric Gaussian function is adopted for defect detection 

applications.  For more complicated texture patterns, asymmetric Gaussian function 

may be needed.  The parameters of a Gabor filter are, therefore, given by the 

frequency φ , the orientation θ  and the scale σ . 
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The Gabor filter  forms a complex valued function.  

Decomposing  into real and imaginary parts gives  

),(,, yxG θφσ

),(,, yxG θφσ

 ),(),(),( ,,,,,, yxjIyxRyxG θφσθφσθφσ +=  (2) 

where 

 )]sincos(2cos[),(),(,, θθπφσθφσ yxyxgyxR +⋅=  

 )]sincos(2[),(),(,, θθπφσθφσ yxnisyxgyxI +⋅=  

The Gabor-filtered output of a gray-level image  is obtained by the 

convolution of the image with the Gabor filter , i.e. 

),( yxf

),(,, vuG θφσ
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∞
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Given a neighborhood window of size WW ×  with 12 += kW , the discrete 

convolutions of  with respective real and imaginary components of 
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Define the energy ),,,( θφσyxE  at  within the window),( yx WW ×  as  

 ),,,(),,,(),,,( 22 θφσθφσθφσ yxGyxGyxE IR +=  (5) 

 

9 



Note that the convolution of an image with the Gabor filter defined in eq.(3) is 

based on the single gray-level information. Some textured defects can only be 

detected in color images.  The proposed Gabor filtering scheme is extended from 

gray-level texture images to colored texture images so that both chromatic and 

structural patterns of a texture can be simultaneously evaluated.  The chromatic 

features in color images are derived from the *** baLCIE −  color space. 

 

2.2 Gabor filtering in color images 

 

The  color space described previously in Section 1 can also be 

represented in terms of the cylindrical coordinates that provide predictors of hue  

and chroma  as expressed below: 

*** baLCIE −
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In this study, we use only chromatic features  and  in the 

 space for defect detection so that the effect of changes in  

illumination intensity can be minimized.  In gray-level images, the single gray-level 

information  is used for the Gabor filtering transform.  In color images, two 

selected chromatic features  and  of each color pixel  are 

used to form a complex number 

abh *
abC

*** baLCIE −

),( yxf

),(1 yxf ),(2 yxf ),( yx

),(),( 21 yxfjyxf + , where the first chromatic 

feature  is the real part and the second chromatic feature is the imaginary 

part.  Therefore, the complex number associated with the two chromatic features in 

the  space is given by .  In this way, two chromatic 

features of a color image can be considered simultaneously with a sole Gabor filter. 

),(1 yxf

*** baLCIE − *
abab Cjh ⋅+
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The filtered output of a color image defined by ),(),( 21 yxfjyxf +  is obtained 

by the discrete convolution of the color image with the Gabor filter , i.e.,  ),(,, yxG θφσ

  (6) ( ) [ ] ),(),(),(, ,,21 mlGmylxfjmylxfyx
l m

θφσ⋅+++++= ∑∑C

The convoluted output  is also a complex number containing the real 

component 

( yx,C )

),,,( θφσyxRC  and the imaginary component ),,,( θφσyxIC .  For a 

neighborhood window of size WW ×  with 12 += kW ,  and  are given by RC IC

 ( ) [ ] [{ }∑∑
−= −=

⋅++−⋅++=
k

kl

k

km
R mlImylxfmlRmylxfyx ),(),(),(),(,,, ,,2,,1 θφσθφσθφσC ]
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) )

 (7) 

and 

  (8) ( ) [ ] [{ }∑∑
−= −=

⋅+++⋅++=
k

kl

k

km
I mlRmylxfmlImylxfyx ),(),(),(),(,,|, ,,2,,1 θφσθφσθφσC

where  and  are the same as those defined in eq. (2). ( mlR ,,, θφσ ( mlI ,,, θφσ

 

Note that eq. (6) uses two chromatic features  and  in color 

images, rather than the single gray-level feature  in gray-level images, so that 

both chromatic information and spatial information of a colored texture image are 

simultaneously considered in the filtering process.  The energy 

),(1 yxf ),(2 yxf

),( yxf

),,,( θφσyxEc  at 

 of a filtered color image within the window of size ),( yx WW ×  is defined by the 

squared modulus of , i.e., ( yx,C )

 ( ) ( )θφσθφσθφσ ,,,,,,),,,( 22 yxyxyxE IRc CC +=  (9) 

 

The energy defined in eq. (9) is a non-negative real number, and has a minimum 

value of zero.  If the Gabor-filter parameters are selected so that the corresponding 

energy is a minimum for a specific faultless texture sample, every subimage that has a 

textured pattern similar to the training sample will generate an energy value close to 
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zero.  Any subimage with a textured pattern different from the training sample will 

yield a distinctly large energy value since only the textured pattern resembling the 

training one will have an ideal objective value of zero.  This process converts the 

difficult defect detection problem in colored texture images into a simple threshold 

segmentation problem in non-texture images where low energy represents 

homogeneous textures and high energy represents local anomalies. 

 

In this study, we are considering a supervised inspection problem, i.e., the 

representative sample of a faultless colored texture is given to help in designing the 

most discriminating filter.  Supervised systems are most appropriate for controlled 

circumstances in industry.  The training sample can be arbitrarily selected from a 

faultless region of the colored texture image.  The neighborhood window  is 

selected so that the representation of self-similarity of a homogeneous texture pattern 

is sufficient.  The self-similarity means that all subimages of a textured image are 

similar to each other, regardless of their positions in the image.  For a given training 

image  with the size and the center at , the optimal Gabor-filter 

parameters are given by 

WW ×

0T WW × ),( 00 yx

 

 min ),,,( 00 θφσyxEc  

subject to  

 maxmin σσσ ≤≤  (10.a) 

 maxmin φφφ ≤≤  (10.b) 

 1800 ≤≤ θ  (10.c) 

 

where ),,,( 00 θφσyxEc  is the energy of the training sample  and can be 0T
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obtained from eq. (9).  Note that the selected size WW ×  of the training image  

must be sufficiently large to contain the periodicity and self-similarity properties of 

the reference texture in question. The constraints (10.a), (10.b) and (10.c) specify the 

possible ranges of filter parameters 

0T

σ , φ  and θ , respectively.  minσ  and maxσ  

are the minimum and maximum values of σ .  minφ  and maxφ  give the minimum 

and maximum values of the frequency parameter φ , and they can be set to 1min =φ  

and W=maxφ  (the width of the neighborhood window).  The orientation parameter 

θ  is restricted to the interval between  and  since symmetry makes the 

other directions redundant. 

°0 °180

 

The formulated model above is a nonlinear constrained programming problem 

with multiple continuous variables.  It may need sophisticated optimization 

techniques such as the simulated annealing (SA) search algorithm [39] to determine 

the best parameter values of σ , φ  and θ .  An empirical study has been conducted 

to compare the detection results from the exhaustive search with the resolution of 1 

(i.e., integer values) and the SA search algorithm with a step size of 0.01 for all three 

parameters.  The detection results showed that the energy function defined in eq. (9) 

is not very sensitive to minor variation of the parameter values.  Both exhaustive and 

SA search methods have performed equally well for generating an objective function 

value smaller than 0.01.  The exhaustive search with the suggested resolution setting 

can be implemented easily, and is computationally simple.  Since the training 

process can be carried out off-line, a simple exhaustive search with the resolution of 1 

for all three parameters will sufficiently find a best Gabor parameter set ),,( θφσ .   

 

In the inspection process, the selected Gabor filter of a given size will slide over 
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the whole sensed image on a pixel-by-pixel basis so that the corresponding energy of 

every pixel in the image can be calculated.  The filter will give a small output 

amplitude close to zero when the sliding window covers a homogeneous texture 

region in the image, and will generate a large response for a discrepant region.  This 

process transforms texture discrimination into detectable filter output. 

 

3. EXPERIMENTAL RESULTS 

 

In this section, we present the experimental results from a variety of colored 

texture images to evaluate the performance of the proposed color Gabor-filtering 

method.  All experiments were implemented on a personal computer using the C 

language.  The  images areRGB 256256× pixels wide with eight bits of intensity 

per band.  The size of the neighborhood window is 6565× pixels for all test samples, 

unless otherwise specified.  In the training process, a subimage of size pixels 

is arbitrarily selected from each faultless reference image to determine the best filter 

parameters. To visually display the output energy

6565×

( )θφσ ,,, yxEc as an intensity 

function, the magnitude of energy is linearly converted to an 8-bit intensity.  The 

brightness of intensity is proportional to the magnitude of energy.  

 

3.1 Detection from Color and Gray-level Images 

 

The chromatic features evaluated in the experiments are  derived 

from the  color space.  Figures 1(a) and 1(b) show a faultless textile 

fabric and a defective version of the fabric, respectively.  The anomaly in Figure 1(b) 

is a color defect.  Its structure is similar to the regular texture pattern, which makes 

*
abab Cjh ⋅+

*** baLCIE −
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the defect hardly visible in the gray-level image, as seen in Figure 1(c).  Figure 1(d) 

visually shows the output energy from the chromatic features  as an 

intensity function, where brightness is proportional to the magnitude of energy.  It 

shows that all pixels in the homogeneous texture region yield small energy values 

close to zero, while pixels in the defective region generate relatively large energy 

values. The trained parameters 

*
abab Cjh ⋅+

),,( θφσ  for Figure 1(a) are (12, 1, 129) with a 

minimum objective value of 0.000000.  Figure 1(c) demonstrates the gray-level 

version of the colored fabric image shown in Figure 1(b).  When only the gray-level 

information is used in the detection process, the resulting output energy (eq. (5)) 

generates noise and cannot reliably detect the defect, as seen in Figure 1(e).  Figure 2 

presents the plot of the energy function in 3-D perspective based on the result from 

the chromatic features .  Note that in the experiment only a single 

training subimage of size  pixels was used to determine the Gabor parameters.  

The resulting energy values of pixels in the homogeneous region of a  test 

image are all approximate to zero. Only pixels in the defective region yield distinctly 

large energy values.  

*
abab Cjh ⋅+
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3.2 Effects of Illumination and Defect Sizes 

 

In this study, two illumination-invariant chromatic features are used to construct 

the color Gabor-filtering scheme.  The effect of changes in illumination on the 

detection results is demonstrated with a wood image shown in Figure 3.  The 

anomaly on the upper-right of the image is a structural defect.  A faultless subimage 

obtained from the wood image in Figure 3(a) is used as the reference sample for 

training.  Wood images in Figures 3(b) and 3(c) are, respectively, the overexposed 
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and underexposed versions of the training image.  Figures 3(d)-(f) present the 

detection results as an intensity function.  They show that the color Gabor filter 

trained under a given illumination can reliably detect all defects in the images, 

regardless of illumination changes.  Furthermore, for the less regular texture surface 

in the wood surface, the defect is also well detected using the proposed color 

Gabor-filtering method. 

 

In order to evaluate the effect of changes in defect size, Figures 4(a)-(c) show 

respectively the surface images of a tile with defects of increasing size (the defect is 

the blue area around the center of the image).  Figures 4(d)-(f) present the resulting 

images from the chromatic features .  It can be seen from the detection 

results that the defects can be reliably detected, regardless of changes in defect size.  

Note that the color defect as small as the one shown in Figure 4(a) is also well 

detected in the filtered image. 

*
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3.3 Effect of Window Sizes 

 

In this study, the size of the neighborhood window is set at  pixels. The 

choice of a proper window size must be large enough to contain the periodic, 

repetitive pattern of a homogeneous texture in question.  Too small a window size 

causes insufficient representation of a texture pattern, whereas too large a window 

size increases the computational burden.   

6565×

 

In order to study the effect of varying window sizes on the output response of 

energy, the textile fabric shown in Figure 1(b) is used as a test sample.  In the 

16 



experiment, the window size is varied from 6565× , 5353× ,  to  

pixels to analyze the impact of window size on detection results.  Figures 5(a) and (b) 

show the detection results for the larger window sizes of 65x65 and 53x53.  These 

window sizes generate a similar energy representation of the defect.  The region 

associated with the defect has distinctly large magnitude of energy and is highly 

concentrated.  However, as the window sizes are reduced to 

4141× 2525×

4141×  and , 

as seen in Figures 5(c) and (d), the detected area of the defect becomes small and 

distributes in a scattering manner.  It is apparent from Figure 5 that an oversized 

window may not generate better detection, but an undersized window may overlook 

subtle defects.  In practical implementation, a window size in the range between 50 

and 60 pixels is suggested for the trade-off between detection effectiveness and 

computational efficiency. 

2525×

 

4. CONCLUSIONS 

 

In automatic surface inspection, small defects that locally break the 

homogeneity of a textured pattern must be detected.  Analysis of defects in a wide 

variety of material surfaces may require simultaneous measurements in both color and 

texture.  Traditional approaches for automatic surface inspection are limited to 

gray-level images.  They generally compute a set of textural features in a sliding 

window, and search for significant local deviations in the feature values between the 

sensed image and the model image.  Most inspection techniques that rely on 

high-level textural features suffer from the difficulty and time-consuming nature of 

extracting features from each specific textured surface. 

 

In this paper we have presented a Gabor-filtering approach for automatic 
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inspection of defects in colored texture surfaces.  It is designed to be highly 

responsive to local variations of both color and texture.  The proposed method is 

based on the output response of energy from the convolution of a Gabor filter with the 

color image characterized by two chromatic features in the *** baLCIE −  space.  

The best parameters of the Gabor filter for a given colored texture image is selected 

so that the responsive energy of a homogeneous texture is approximately zero.  Any 

regions with color and textural anomalies in the sensed image will generate distinctly 

large energy values and, therefore, a simple binary threshold can be selected easily to 

discriminate between homogeneous regions and defective regions in the filtered 

image.  The experimental results from a number of test samples including textile 

fabric, wood and tile surfaces have shown the effectiveness of the proposed color 

Gabor-filtering defect detection method.   

 

The proposed method is not sensitive to changes in lighting and defect size.  

However, due to the inherent property of 2-D Gabor filters, the proposed color Gabor 

filtering method is rotation-dependent for textures with oriented structure.  In 

practical implementation, the textural surface to be inspected in a manufacturing 

process must be mechanically aligned.  If the orientation of a structural texture is 

unknown before the inspection, the orientation of the dominant line pattern in the 

spatial domain image can be determined easily by detecting the high-energy 

frequency components in the Fourier domain image using a 1-D Hough transform, as 

proposed by Tsai and Hsieh [40].  The inspection image can then be transformed so 

that its orientation is coincident with that of the training sample.  
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Figure 1. (a) A faultless fabric surface; (b) a defective fabric surface; (c) the 

gray-level image of (b); (d) visual display of the energy response as an 

intensity function based on the result from ; (e) the 

detection result from the gray-level image in (c). 
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Figure 2. The energy function of Figure 1(d) in 3-D perspective based on the 

filtering result from . *
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Figure 3. The effect of changes in illumination intensity:  

(a) the wood image used for training; (b) an 
overexposed image of the wood; (c) an 
underexposed image of the wood; (d), (e), (f) the 
detection results of the wood images in (a), (b) 
and (c), respectively. 
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Figure 4. The effect of changes in the defect size: 

(a), (b), (c) tile images with defects of 
increasing size; (d), (e), (f) the 
detection results of the tile images in 
(a), (b) and (c), respectively. 
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Figure 5. The effect of changes in the window size for the test sample of Figure 1(b): 

(a), (b), (c), (d) the detection results from window sizes , , 
 and  pixels, respectively. 
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