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Abstract 

 

 In this paper, we present a fast machine vision method for the automatic 

inspection of defects in textured surfaces.  Traditional 2D Gabor filtering schemes 

have shown to be very effective for detecting local anomalies in textured surfaces of 

industrial materials.  However, they are computationally expensive and sensitive to 

image rotation.  In order to alleviate the limitations of 2D Gabor filtering, we first 

use the 1D ring-projection transformation to compress a 2D gray- level image to a 1D 

pattern, and then employ a 1D Gabor filter to detect defects embedded in a 

homogeneous texture.  Given a problem with image size N x N and filter window  

W x W, the computational complexity can be significantly reduced from O(W2N2) in 

the 2D Gabor space to O(WN2) in the 1D Gabor space, and the detection results are 

invariant to rotation changes of a texture.  The experiments on structural textures 

such as wooden surface, LCD display and machined surface, and statistical textures 

such as granite, leather and sandpaper have shown the efficiency and effectiveness of 

the proposed method. 
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1. Introduction 

 

     Visual inspection makes up an important part of quality control in 

manufacturing.  The manual activity of inspection could be subjective and highly 

dependent on the experience of human inspectors.  In this study, we propose a fast 

machine vision method for automatic surface inspection. 

 

     In automatic surface inspection, small defects that locally break the 

homogeneity of a textured surface must be detected.  The surfaces of many industrial 

materials have textural appearance in images.  Textures are generally classified into 

two major types, structural and statistical [1].  Structural textures are those that are 

composed of repetitions of some basic texture primitives, such as lines, with   

deterministic rules of displacement.  This type of textures arises in textile fabrics, 

machined surfaces, patterned wafers, LCD displays, CCD arrays, and the surfaces of 

many man-made products.  Structural textures generally show oriented patterns on 

the surface and, therefore, their appearances in rotated images are different.  

Statistical textures cannot be described with texture primitives and deterministic 

displacement rules.  The spatial distribution of gray levels in such a textured image 

is rather stochastic.  Sandpaper, leather, and many metallic surfaces under the 

magnification of microscopes fall in this category.  Statistical textures generally 

show isotropic patterns on the surface and, therefore, their appearances are invariant 

to image rotation.  Defect detection in both structural and statistical textures is 

studied in this paper. 

 

     The inspection task in this paper is classified as qualitative inspection [2] which 

involves detecting novel but obviously fault items such as scratches, cracks, stains and 
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other ill-defined flaws.  Many of these unanticipated defects are small in size, and 

cannot be described by quantifiable measures, making automatic defect detection in 

textured surfaces difficult. 

 

     In the recent past, Gabor filters [3, 4] have been well recognized as a joint 

spatial/spatial- frequency representation for analyzing textured images containing 

highly specific frequency and orientation characteristics.  Daugman [5] showed that 

Gabor filters have optimal joint localization in both the spatial and the 

spatial- frequency domains.  Compared to the Fourier transform that only 

characterizes the spatial- frequency in a global approach, the Gabor transform 

indicates the frequency content in localized regions in the spatial domain [6] so that 

local deviations embedded in a homogeneous pattern can be distinctly identified.  In 

addition, multi-channel Gabor filtering mimics the visual process in the early stage of 

the human visual system [7, 8].  It is suitable for detecting unexpected and 

ill-defined anomalies in textured surfaces. 

 

     A 2D Gabor function is an oriented complex sinusoidal grating modulated by a 

2D Gaussian function [5], which is given by 

   ( ) ( ) ( )[ ]θθ‧θσ sincosjexp   ,  ,  , , yx2pyxgyxG += φσφ             (1) 

where 

   )]2/)(exp[
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The parameters of the Gabor function are specified by the frequency φ , the 

orientation θ  of the sinusoid, and the scale σ  of the Gaussian function.  The 2D 

Gabor function can be also rewritten as 
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   ( ) ( ) [ ])(j2exp   ,  , ,  , vyuxyxgyxG vu += πσ ‧σ                     (2) 

where )sin,cos(),( θφθφ=vu .  The norm of the vector gives the frequency φ , and 

the angle of the vector gives the orientation θ  of the sinusoid.  Local orientations 

and spatial frequencies explicit in Gabor filters are used as the key features for texture 

processing.  In texture discrimination application, the characteristic of each pixel 

),( yx  in a 2D image is measured by the Gabor-filtered output, which is obtained by 

the convolution of the image with the 2D Gabor filter ),(,, βασ vuG , i.e. 

   ∫ ∫
∞

∞−

∞

∞−
⋅++= βαβαβα σ ddGyxfyxC vuD ),(),(),( ,,2 , ),( yx∀    (3) 

     Gabor-filter based methods have been widely applied to texture segmentation 

[9-12].  The task of defect detection in homogeneously textured surfaces is clearly 

different from that of texture segmentation since there is no priori knowledge on 

unpredictable defects and they exhibit no distinct textural properties.  Two main 

methods have been proposed in the literature to select proper Gabor filters for texture 

analysis, the filter-bank approach and the filter-design approach [13].  In filter-bank 

approaches [6, 14, 15], the filter parameters are present ad hoc and are not necessarily 

optimal for a particular processing task.  The input image is generally filtered with a 

family of Gabor filters tuned to several resolutions and orientations.  Clausi and 

Jernigan [16] compared various Gabor filter implementations for texture analysis.  

They found that using the Gabor filter magnitude response given a frequency 

bandwidth and spacing of one octave and orientation bandwidth and spacing of 30 

degrees generated preferred results.  The filter-bank approaches are not 

computationally convenient or feasible since they must apply a large number of filters 

responding at multiple resolutions and orientations to a given image. 
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     In filter-design approaches [4, 11, 13, 17], only one or a few filters for a 

particular application are designed in an effort to reduce the difficulties of filter-bank 

approaches.  The selection of best filters is generally based on a priori knowledge of 

the texture properties derived from a spectral Fourier analysis of the whole image.  

The filter-bank and filter-design approaches of 2D Gabor filters have been applied to 

the inspection of industrial materials such as wineglass [18], steel surfaces [19], 

wooden surfaces [20], and textile fabrics [21-23]. 

 

     Tsai and We [24] have considered the issue of designing a single 2D Gabor 

filter to detect any unpredictable defects in a textured surface.  In their algorithm, the 

design objective for the best Gabor filter is based on the minimization principle that 

finds the minimum output response of a homogeneous texture pattern in the training 

process.  By defining a non-negative output response, each homogeneous texture 

region enveloped in a small 2D window will have output amplitude approximate to 

zero, and any untrained defect region will have distinct output amplitude.  The 

statistical process control principle is then used to set up the control limit (threshold) 

of output amplitude for distinguishing between defective regions and homogeneous 

regions in the filter image.  Their method has performed well for a variety of real 

texture samples including textile fabrics, milled surfaces, wood, leather and 

sandpaper. 

 

     Although the 2D Gabor filtering schemes have been widely used for the 

inspection of industrial materials, rotation-dependency and intensive computation are 

two inherent problems of 2D Gabor filtering in practical implementation.  As seen in 

Eq. (1), the designed Gabor filter with specific parameter value of orientation θ  is 

only used to generate desired output response for a given texture with specific 
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oriented structure.  When the oriented texture is rotated in an image, the designed 2D 

Gabor filter is no longer applicable to describe the textural characteristics.  Therefore, 

the image orientation of a structural texture must be fixed or be predetermined before 

the use of traditional 2D Gabor filtering methods.  Furthermore, for a 2D input 

image of size NN × , and a 2D Gabor filter of limited size WW × , the 

computational complexity of traditional 2D Gabor filtering is in the order of 22 NW ⋅ , 

given that the image orientation is fixed at a specific angle. 

 

     In this study, we propose a 1D ring-projection representation and 1D Gabor 

filtering scheme to improve the method of Tsai and Wu [24] for defect detection in 

both structural and statistical textures.  In order to make the Gabor output response 

insensitive to image orientation, we first propose a rotation-invariant representation of 

the 2D gray- level image based on the ring-projection transformation.  

Ring-projection representation converts the original 2D gray-level image contained in 

a circular window into a 1D signal as a function of radius.  The projection is 

constructed along concentric rings of increasing radii, and the feature of each ring 

with a specific radius is represented by the mean gray level of all pixels falling on the 

ring.  The ring-projection representation not only is rotation- invariant but also 

reduces the data dimensionality for fast computation.  Once the 1D ring-projection 

pattern is obtained, the 1D Gabor filter, instead of the 2D Gabor filter, can be used to 

efficiently compute the output response of each pixel in the textured image.  The 1D 

Gabor filter along with the 1D ring-projection representation makes the Gabor 

filtering scheme computationally fast and flexible for detecting defects in structural 

and statistical textures, regardless of orientation changes. 

 

     This paper is organized as follows: Section 2 first describes the 1D 
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ring-projection representation for 2D gray-level textured images.  Then the 1D 

Gabor filtering scheme, and the design of the best Gabor filter are presented.  

Section 3 demonstrates the experimental results for a variety of real textured surfaces 

including wooden surface, LCD display, machined surface, granite, leather and 

sandpaper.  The effectiveness and efficiency of both 1D and 2D Gabor filtering 

methods are also compared in this section.  This paper is concluded in Section 4. 

 

 

2. 1D Discriminating Filter Design 

 

2.1 Ring-projection Representation 

     In order to reduce the computational burden of the 2D convolution (Eq. (3)) and 

make the Gabor output response invariant to image rotation, a gray level 

ring-projection transformation is proposed.  It transforms a gray- level textured image 

in the 2D Cartesian space into a rotation- invariant representation in the 1D 

ring-projection space.  The proposed transformation scheme for gray-level textures is 

inspired by the ring-projection algorithm [25], which is originally developed for 

character recognition in binary images. 

 

     Let the texture pattern be contained in a circular window of radius 2W .  The 

radius 2W  chosen for the neighborhood window is selected so that the 

representation of periodicity and self-similarity of a homogeneous texture pattern is 

sufficient.  The self-similarity means that all subimages enveloped in the 

neighborhood window are considered similar independently of their positions in the 

whole textured image.  Let the input image be NN ×  pixels.  The ring projection 

of a subimage ),( yxf  defined in the circular window with the center at ),( yx  is 
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given as follows.  First, ),( yxf  in the Cartesian coordinates is transformed to the 

polar coordinates: 

   
222 )2()()(),(,sin

,cos
Wyyxxyxry

rx
≤−′+−′∋′′∀=′

=′

θ
θ

 

Hence )sin,cos(),( θθ rrfyxf =′′ .  The ring-projection of the subimage ),( yxf  

at radius ,r denoted by ),(, rP yx is defined as the mean gray value of 

)sin,cos( θθ rrf  at the specific radius r .  That is, 

   ∫=
π

θθθ
π

2
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Its discrete form is given by 

   ∑ ×∈∀=
k

kk
r

yx NNyxrrf
n

rP ),(),sin,cos(
1

)(, θθ              (4) 

where rn  is the total number of pixels falling on the circle of radius 

2,,2,1,0, Wrr L= .  Taking the mean gray value for each specific ring makes the 

projected values in various ring radii limited to a controlled range and equal 

importance.  Since the projected values are obtained from circular rings, the derived 

1D ring-projection pattern is invariant to rotation of its corresponding 2D texture 

pattern.  Furthermore, it reduces the data dimensionality from 2)2(Wπ  in the 2D 

Cartesian space to 2W  in the 1D ring projection space, where 2W  is the radius 

of the circular window. 

 

     The mechanism of ring-projection transformation is demonstrated in Figure1, 

where the superimposed circles represent the concentric rings of various radii.  
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Figures 1(a) and 1(b) present an oriented texture in two distinct orientations (vertical 

and diagonal line patterns).  Figures 1(c) and 1(d) show the plots of ring-projected 

values as a function of radius r .  It can be seen from Figure 1 that these two 

ring-projection plots are approximately identical, regardless of orientation changes. 

 

2.2 The 1D Gabor Filter 

     Since the 2D textured image is now represented by a 1D ring-projection pattern, 

we need only to design a 1D Gabor filter for defect detection.  Spatially, a 1D Gabor 

function is a 1D Gaussian modulated sinusoid.  That is, 

   ]2exp[)()(, urjrgrG u πσσ ⋅= , 2,,2,1,0 Wr L=               (5) 

where 

   ])(
2
1

exp[
2
1

)( 2

σσπ
σ

r
rg −⋅=  

The term )(rgσ  is the 1D Gaussian function with scale parameter σ .  The 

complex exponential has a spatial frequency of u .  The parameters of a 1D Gabor 

filter are therefore given by the frequency u  and the scale σ . 

 

     The 1D Gabor filter )(, rG uσ  forms a complex-valued function.  

Decomposing )(, rG uσ  into real and imaginary parts gives 

   )()()( ,,, rIjrRrG uuu σσσ ⋅+=                                (6) 

where 

   ]2cos[)()(, urrgrR u πσσ ⋅=  

   ]2sin[)()(, urrgrI u πσσ ⋅=  



29 

Gabor-filtered output of a ring-projection pattern )(, rP yx  at pixel coordinates ),( yx  

is obtained by the convolution of the 1D ring-projection pattern )(, rP yx  with the 1D 

Gabor filter )(, rG uσ , i.e. 

   ∫
∞

∞−
⋅= drrGrPyxC uyxD )()(),( ,,1 σ                             (7) 

The convolution result of ),(1 yxC D  is also a complex-valued number.  Given a 

circular window of radius 2W  with the center at pixel coordinates ),( yx  in the 

textured image, the discrete convolution of ring-projection pattern )(, rP yx  with 

respective real and imaginary parts of the 1D Gabor filter )(, rG uσ  are 

   )()(),|,( ,,

2

0

rRrPuyxG uyx

W

r
R σσ ⋅= ∑

=

                         (8a) 

and 

   )()(),|,( ,,

2

0

rIrPuyxG uyx

W

r
I σσ ⋅= ∑

=

                          (8b) 

Define the energy at pixel coordinates ),( yx  in the filter image as the squared 

modulus of ),(1 yxC D , i.e. 

   22 )],|,([)],|,([),|,( uyxGuyxGuyxE IR σσσ +=                (9) 

for 2,,12,2, WNWWyx −+= L , where N  is the image width, and 2W  is 

the radius of the circular window that defines the neighborhood region of each pixel 

),( yx .  The computational complexity of the proposed 1D Gabor filtering scheme is 

only )( 2NWO ⋅  for textured images in arbitrary orientations, which is significantly 

reduced from )( 22 NWO ⋅  of a traditional 2D Gabor filtering method that requires 

oriented textures in fixed orientations. 
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     Note that the energy defined in Eq. (9) is a non-negative real number.  If the 

Gabor-filter parameters are selected so that the corresponding energy is a minimum 

for a specific texture sample, every filtered subimage that has a similar texture pattern 

to the training sample will generate the energy value close to zero.  Any subimage 

with the texture pattern different from the training one will yield a distinctly large 

energy value.  This converts the difficult defect detection problem in complicated 

textured-surfaces into a simple binary thresholding problem where low energy 

represents homogeneous textures and high energy represents local anomalies. 

 

     In this work, we are considering a supervised inspection problem, i.e. 

representative samples of the textures of interest are given to help in designing the 

most discriminating filter.  The training sample can be arbitrarily selected from a 

faultless region of textured surface.  The neighborhood window of radius 2W  is 

selected so that the representation of self-similarity of a homogeneous texture pattern 

is sufficient.  For a given training texture 0T  with circular size of radius 2W  and 

center at ),( 00 yx , the optimal Gabor-filter parameters ),( uσ  are given by 

   ),|,( 00 uyxEMin σ  

 Subject to 

   maxmin σσσ ≤≤                                        (10a) 

   maxmin uuu ≤≤                                         (10b) 

where ),|,( 00 uyxE σ  is the energy of the model image 0T , and it can be obtained 

from Eq. (9).  The constraints 10(a) and 10(b) specify the possible ranges of filter 

parameters σ  and u .  The terms minσ  and maxσ  are the minimum and 

maximum values of σ ; minu  and maxu  are the minimum and maximum values of 
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u .  We can generally select minσ , minu  = 1 and maxσ , maxu  = 2W . 

 

     The formulated model above is a nonlinear optimization problem.  This may 

call for sophisticated optimization techniques such as the simulated annealing (SA) 

search algorithm [12] to determine the best parameter values of σ  and u .  We 

have conducted an empirical study to compare the detection results from the 

exhaustive search with the resolution of 1 for scale parameter σ  and 0.01 for 

frequency parameter u , and the SA search method with the resolution of 0.001 for 

both parameters.  The detection results showed that the energy function defined in 

Eq. (9) is not very sensitive to minor variation of the parameter values.  Both 

exhaustive and SA search methods have performed equally well to generate the 

objective function value smaller than 0.01.  The exhaustive search with the 

suggested resolution setting can be easily implemented, and computationally simple.  

For a circular window of radius 30 pixels, the training time can be completed in 10 

seconds with a typical personal computer.  Since the training process can be carried 

out off- line, a simple exhaustive search will serve the purpose to find a best parameter 

set ),( uσ . 

 

     In the inspection process, the selected Gabor filter will slide over the whole 

sensed image on a pixel-by-pixel basis so that the corresponding energy of every pixel 

in the image can be determined.  The filter will give a minimum energy response 

close to zero when the sliding window covers a homogeneous texture region in the 

image, and will generate a large energy response for a defective region.  This 

transforms texture differences into detectable filter output.  A simple statistical 

process control principle proposed in reference [24] can be used to set up the control 

limit for distinguishing defects from homogeneous textures in the filter image.   
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3. Experimental results 

 

     In this section, we present the experimental results for evaluating the efficacy of 

the proposed 1D Gabor filtering scheme for defect detection in textured surfaces.  

All experiments are implemented on a personal computer with a Pentium II-400 Mhz 

processor using the C language.  The algorithm is tested on a number of real textured 

surfaces including wooden surface, LCD display, milled surface, granite, leather and 

sandpaper.  All input images are 256256 ×  pixels wide with 8-bit gray- levels.  

The radius of the circular window ranges between 15 and 30 pixels depending on the 

texture pattern in question.  In the training process, a subimage enveloped in an 

appropriate circular window is arbitrarily selected from a faultless reference image of 

each texture class to determine the best filter parameters. 

 

     For defect detection in structural textures, Figure 2(a) shows a faultless wooden 

surface.  The square frame in the figure marks the subimage used in training.  The 

radius of the circular window is 30 pixels.  Figure 2(b) and 2(c) present a clear 

wooden surface and a defective one used in the inspection process.  Figures 2(d) and 

2(e) depict the respective plots of the energy function in 3D perspective for Figures 

2(b) and 2(c).  Figure 2(f) further shows the output energy as an intensity function 

for Figure 2(c), where brightness is proportional to the magnitude of energy.  Figures 

2(d)-(f) show that the energy values are small and uniformly distributed in the filter 

image for a clear wooden surface, whereas the energy values of pixels in the irregular 

region for a defective wooden surface are distinctly large. 

 

     Figure 3(a) shows a faultless LCD display, in which the white square frame 

marks the training subimage.  The radius of the circular window is 15 pixels.  
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Figures 3(b) and 3(c) present a clear LCD display, and a defective LCD display with 

hardly visible scratches.  It can be observed from the corresponding detection results 

in Figures 3(d)-(f) that the proposed 1D Gabor-filter detector can also identify the 

scratches even though they are subtle defects in the LCD display.  

 

     For defect detection in statistical textures, Figure 4(a) shows a faultless granite 

image with randomly textured surface.  The white square frame on the upper left of 

the figure marks the training subimage.  The radius of the circular window is only 15 

pixels.  Figures 4(b) and 4(c) present a clear granite surface and a defective one used 

in the inspection process.  Figures 4(d)-(f) illustrate the corresponding detection 

results, which show that all pixels in the homogeneous texture regions have small 

energy values close to zero, and pixels in the defective regions have notably large 

energy values.  Table 1 summarizes the selected Gabor parameter values and the 

resulting energy values for the training samples shown in Figures 2(a), 3(a) and 4(a).  

Note that all trained energy values are approximately equal to zero. 

 

     In the proposed method, the radius of neighborhood window affects the 

inspection results.  The choice of a proper circular window size must be large 

enough to contain the periodic, repetitive pattern of a homogeneous texture in 

question.  Too small a window size causes insufficient representation of texture 

information, whereas too large a window size increases the computational burden.  

Figure 5(a) presents a structural texture of paper surface with a contamination defect.  

Figures 5(b) and 5(c) show the resulting energy values as an intensity function from 

the circular windows of radii 15 and 20 pixels, respectively.  Figure 6(a) shows a 

statistical texture of leather surface with a wear defect.  The corresponding detection 

results from the circular windows of radii 20 and 30 pixels are presented in Figures 
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6(b) and 6(c).  Figures 5 and 6 reveal that the detected number of high-energy pixels 

in the defective regions becomes small and distributes more scatteringly for an 

undersized window.  For a sufficiently large window size, the high-energy pixels 

associated with the defective regions in the textured image are significant and well 

separated in the resulting filter image.  Our empirical study on a numerous texture 

samples has shown that the circular window of radius 30 pixels is generally sufficient 

for defect detection applications.  In practical implementation, the choice of a 

window radius in the range between 25 and 35 pixels is suggested for the trade-off 

between detection effectiveness and computational efficiency. 

 

     In order to evaluate the effect of rotation changes on detection results, Figures 

7(a1), (b1) and (c1) show a defective wooden surface in °0 - (vertical lines), °40 - ( 

approximately diagonal lines) and °80 - (approximately horizontal lines) orientations.  

The faultless wooden surface shown in Figure 2(a) is used as the reference texture in 

training.  Figures 7(a2), (b2) and (c2) present the resulting energy values as an 

intensity function using the proposed 1D Gabor filtering scheme.  They show that 

the proposed method is invariant to orientation changes for structural textures with 

highly oriented patterns.  All defects in Figures 7(a1)-(c1) are reliably detected, 

regardless of image orientations.  Figures 7(a3), (b3) and (c3) show the 

corresponding detection results as an intensity function using the 2D Gabor filtering 

method.  The results reveal that the defect can be well detected if the orientation of 

the texture under inspection is coincident with the training one, as shown in Figure 

7(a3).  However, the 2D Gabor filtering method performs poorly for the texture in 

different orientations, as seen in Figures 7(b3) and 7(c3). 

 

     Finally, we compare the differences of output responses in the filter image 
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between the 1D and 2D Gabor filtering methods.  Figures 8(a) and 9(a) show 

respectively a milled surface (structural texture) with a scratch defect, and a sandpaper 

surface (statistical texture) with a wear defect.  The resulting output energies from 

the 1D and 2D Gabor filtering methods are depicted as an intensity function, as seen 

in Figures 8(b)-(c) and Figure 9(b)-9(c), and are plotted in 3D perspective, as seen in 

Figures 8(d)-(e) and Figures 9(d)-(e).  It can be seen from both Figures 8 and 9 that 

the detected defective elements from the 2D Gabor filtering method are highly 

concentrated, whereas the detected defective elements from the 1D Gabor filtering 

scheme are more scattering.  In terms of resultant energy values, both 1D and 2D 

Gabor filtering methods generate distinctly high output responses for defective 

regions in the filter image, as seen in the 3D plots of Figures 8(d)-(e) and 9(d)-(e). 

 

     Table 2 summarizes the computation times of the 1D and 2D Gabor filtering 

methods for various window radii.  The computation time is based on an input image 

of size 256256 ×  with a Pentium II-400 Mhz personal computer.  As shown in 

Table 2, the inspection time of the proposed 1D Gabor filtering scheme is only 0.7 

seconds for a large window of radius 32 pixels, compared to 165 seconds of the 2D 

Gabor filtering method.  The proposed 1D Gabor filtering method is far more 

efficient than the 2D one.  

 

 

4. Conclusions 

 

     Detecting small defects which appear as local anomalies embedded in a 

homogeneously textured surface is a common problem in industrial inspection.  The 

traditional 2D Gabor filtering methods have shown to be an effective technique for 
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automatic surface inspection.  However, they suffer from the inherent properties of 

rotation-dependency and intensive computation, and become impractical for on- line 

inspection applications. 

 

     In this paper, we have proposed a fast rotation- invariant defect detection 

method that incorporates the 1D ring projection representation and the 1D Gabor 

filtering to alleviate the limitations of the 2D Gabor filtering methods.  The 2D 

circular subimage in a textured image is first transformed to a 1D pattern in the 

ring-projection space.  The ring-projection representation not only eases the 

computational complexity by reducing the data dimensionality, but also makes the 

detection invariant to rotation.  Then a 1D Gabor filter is used to compute the output 

response by convoluting each circular subimage with the Gabor filter in a 

pixel-by-pixel basis throughout the whole input image.  Pixels in the homogeneous 

region will have small output amplitude approximate to zero, and pixels in any 

defective region will yield distinctly high output amplitude. 

 

     Experimental results have shown that the proposed 1D Gabor filtering scheme 

is very efficient in computation and effective in detection for both structural textures 

such as textile fabric, machined surface, wooden surface and LCD display, and 

statistical textures such as sandpaper, leather and granite.  The proposed method is 

not affected by rotation changes for structural textures with highly oriented patterns.  

The detected defect size from the 1D Gaobr filtering scheme is relatively scattering, 

and the one from the 2D Gabor filtering method is highly concentrated.  Both 1D 

and 2D Gabor filtering methods generate high-energy values for defective regions, 

which are distinctly discriminate from the uniformly small energy values for 

homogeneous regions in the filter image.  Due to the computational efficiency of the 



37 

proposed 1D Gabor filtering scheme, on-line defect detection in textured surfaces can 

be realized. 
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Figure 1. An oriented fabric texture in two different orientations.  (a) and (b) The 
original images.  (c) and (d) The respective ring-projection plots. 
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(c)  (c) 

 
Figure 2. The effect of the window size 

for a structural texture.  (a) 
The test sample of a paper 
surface.  (b) and (c) The 
respective detection results 
from windows of radii 15 and 
20 pixels. 

Figure 3. The effect of the window size 
for a statistical texture.  (a) 
The test sample of a leather 
surface.  (b) and (c) The 
respective detection results 
from windows of radii 20 and 
30 pixels. 
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Figure 4. The effect of changes in image rotation.  (a1), (b1) and (c1) The 

defective wooden surface in three different orientations.  (a2), (b2) and 
(c2) The respective detection results from the proposed 1D Gabor 
filtering scheme.  (a3), (b3) and (c3) The respective detection results 
from the 2D Gabor filtering method. 
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Figure 5. A comparison of detection results for a structural texture using the 

1D and 2D Gabor filtering methods.  (a) The original image of a 
milled surface.  (b) and (c) The respective visual displays of the 
energy as an intensity function.  (d) and (e) The respective energy 
functions in 3D perspective. 
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(d)  (e) 
 

Figure 6. A comparison of detection results for a statistical texture using the 1D and 
2D Gabor filtering methods.  (a) The original image of a sandpaper 
surface.  (b) and (c) The respective visual displays of the energy as an 
intensity function.  (d) and (e) The respective energy functions in 3D 
perspective. 
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Figure 7. (a). A clear wooden surface. (b) A defective wooden surface. (c) and (d) 

The respective energy functions in 3D perspective for (a) and (b). (e) and 
(f) The respective detection results of the energy as an intensity function 
for (b) from the 1D and 2D Gabor filtering methods.
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Figure 8. (a) A clear LCD surface. (b) A defective LCD surface with scratches. (c) 

and (d) The respective energy functions in 3D perspective for (b) and (c).  
(e) and (f) The respective detection results from the 1D and 2D Gabor 
filtering methods for the defective sample in (b).

 
 
 
 



48 

 

 

 

 
(a)  (b) 
   
   

 

 

 
(c)  (d) 
   
   

 

 

 
(e)  (f) 

 
Figure 9. (a) A faultless granite surface used in training.  (b) A clear granite surface.  

(c) A defective granite surface.  (d) and (e) The respective energy 
functions in 3D perspective for (b) and (c).  (f) The resulting energy 
values as an intensity function for the defective granite in (c).
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Table 1. The comparison of computation times with the 1D and 2D Gabor filtering 

methods. 
 

Window size Training time (sec.) Inspection time (sec.) 
2D Gabor 

)( WW ×  
1D Gabor 

( 2W ) 2D Gabor 1D Gabor 2D Gabor 1D Gabor 

2525×  12 220 2 65 0.4 
4141×  20 340 4 93 0.5 
5151×  25 455 6 116 0.6 
6565×  32 585 12 165 0.7 

* Based on an input image of 256256 ×  pixels and a Pentium Ⅱ-400 MHz PC. 

 
 
 
Table 2. The trained energy values and filter parameter values. 
 
Textured image 
 

Energy E  
 

Filter parameters ),( uσ  
 

Wood (Fig. 7(a)) 0.000052 (25 , 24.75) 
LCD (Fig. 8(a)) 0.000865 (15 , 10.40) 
Granite (Fig. 9(a)) 0.004986 (20 ,  1.59) 
 
 

 


