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ABSTRACT 

 

In this paper we present a machine vision system for automatic inspection of 

defects in textured surfaces found in industry.  The defects to be inspected are 

those that appear as local anomalies embedded in a homogeneous texture.  The 

proposed method is based on a Gabor filtering scheme that computes the output 

response of energy from the convolution of a textured image with a specific Gabor 

filter.  The best parameters of a Gabor filter is selected so that the energy of the 

homogeneous texture is zero, and any unpredictable defects will generate 

significantly large energy values.  A simple thresholding scheme then follows to 

discriminate between homogeneous regions and defective regions in the filtered 

image.  This transforms texture differences into detectable filter output.  The 

experiments on structural textures such as textile fabrics and milled surfaces, and 

statistical textures such as leather and sandpaper have shown the effectiveness of 

the proposed method. 
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1. INTRODUCTION 

 

Image analysis techniques are being increasingly used to automate industrial 

inspection.  The manual activity of inspection could be subjective and highly 

dependent on the experience of human inspectors.  In this study we use machine 

vision to substitute for human inspectors for automated surface inspection. 

 

In automated surface inspection, one has to solve the problem of detecting small 

surface defects which appear as local anomalies embedded in a homogeneous texture.  

Textures are generally classified into two major types, structural and statistical [1].  

Structural textures are those that are composed of repetitions of some basic texture 

primitives with a deterministic rule of displacement.  This type of defect inspection 

arises in textile fabrics and machined surfaces.  Statistical textures can not be 

described by primitives and displacement rules.  The spatial distribution of gray 

levels in such textured image is rather stochastic.  The textured surfaces of sandpaper 

and castings fall in this category.  In this paper, we aim at the surface defect 

inspection for both structural and statistical textures found in industry. 

 

The inspection task in this paper is classified as qualitative inspection [2] which 

involves detecting non-quantitatively measurable but obviously faulty items such as 

scratches, cracks, stains, shedding of fibers and other ill-defined faults.  Texture 

defects may have block-like or linear shapes or any random patterns.  The sizes of 

defects are usually small with respect to the imaged surface, which break the 

homogeneity of the texture pattern.  Human inspectors are quite flexible and can 

easily recognize novel defects in textured surfaces.  Many of these unanticipated 
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defects can not be described by explicit measures, making automated defect detection 

difficult. 

 

Most of the defect detection systems are focused on nontextured surfaces 

(uniform gray-level images), such as glass panel [3], sheet steel [4], aluminum strips 

[5], and web materials [6], using thresholding or edge detection techniques.  Defects 

in these images can easily be detected because commonly used measures usually have 

very distinct values.  All automated visual inspection systems for complicated 

textured-surfaces generally attempt to identify defects by building adequate 

representation (templates or features) for the model image and using this 

representation to analyze a sensed image for detecting anomalies.  The degree of 

success of an inspection system depends on how adequate and general the 

representation is.  Automated visual inspection techniques can be separated into two 

general approaches based on the representation used [2].  The first approach involves 

matching a template of a defect-free model to the sensed image.  This pixel-by-pixel 

matching scheme has been widely used for PCB (printed circuit board) inspection [7, 

8].  However, it is only suitable for objects with geometric patterns.  It experiences 

difficulty with frequently occurring variations of textured patterns. 

 

The second approach computes a set of textural features in a sliding window 

(subimage), and searches for significant local deviations in the feature values from the 

entire image.  The most difficult task of this approach is to extract adequate textural 

features which most completely embody information of the texture in the image.  

The features generally must be evaluated from samples of a large training set.  A set 

of features that is an optimal representation of a specific texture could be completely 
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useless for other texture patterns.  There is no straightforward manner to judge the 

appropriate features to use.  Therefore, the selection of an adequate feature set for a 

new texture in the training process requires the help of human knowledge.  

Furthermore, textures which are characterized by a vector of multiple features result 

in high dimensionality.  This call for complicated classifiers such as Bayes [9], 

maximum likelihood [10], and neural networks [11] for comparing sensed features 

and model features. 

 

Many methods have been proposed to extract textural features either directly 

from the spatial domain or from the spatial-frequency domain.  In the spatial domain, 

the more simple textural features are first-order statistics [12] such as mean, variance, 

skewness and kurtosis from the gray-level histogram of an image.  The more reliable 

and commonly used features are the second-order statistics derived from spatial 

gray-level co-occurrence matrices [13].  A co-occurrence matrix is based on the 

estimation of a second-order joint conditional probability density function that defines 

the spatial and intensity changes between pixels.  A series of statistics, such as 

energy, entropy, local homogeneity, etc, is then calculated from the co-occurrence 

matrix as the discriminate measures of textures.  A survey and demonstration of the 

co-occurrence matrix methods can be found in [14]. 

 

Ojala et al. [15] used textural features based on first-order statistics derived from 

edges in the image, and Conners et al. [16] employed both first-order statistics and 

second-order statistics derived from co-occurrence matrices for the inspection of 

defects in wood.  Siew and Hogdson [14] studied textural features for carpet wear 

assessment based on co-occurrence matrices.  Ramana and Ramamoorthy [12] used 
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the co-occurrence matrix approach to study the textural features of machined surfaces 

in grinding, milling and shaping processes. 

 

Early work [17] suggested that it may be possible to find better textural features, 

which are less sensitive to noise and intensity variation, in the spatial-frequency 

domain than those features extracted from the spatial domain.  Measures of the shape 

of the spatial frequency spectrum such as location, size and orientation of peak in 

regions of spatial frequency using the 2-D Fourier transform can be used to design the 

textural features.  Liu and Jernigan [18] presented a set of 28 textural features 

derived in the spatial frequency domain for texture analysis.  Tsai et al. [19] 

proposed 5 textural features derived from the Fourier domain image and used neural 

network classifiers to assess the roughness of machined surfaces. 

 

    The Fourier methods characterize the spatial-frequency distribution, but they do 

not consider the information in the spatial domain.  In the recent past, Gabor filters 

[20] are well recognized as a joint This type of defect inspection arises in textile 

fabrics and machined surfaces. spatial/spatial-frequency representation for analyzing 

textured images containing highly specific frequency and orientation characteristics.  

Daugman [21] showed that Gabor filters have optimal joint localization in both the 

spatial and the spatial-frequency domains.  In addition, they are bandpass filters, 

which are inspired by a multi-channel filtering theory for processing visual 

information in the early stages of the human visual system [22, 23].   

 

A 2-D Gabor function is an oriented complex sinusoidal grating modulated by a 

2-D Gaussian function.  The parameters of the Gabor function are specified by the 
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frequency, the orientation of the sinusoid, and the scale of the Gaussian function.  

Local orientations and spatial frequencies explicit in Gabor filters are therefore used 

as the key features for texture processing.  Gabor-filter based methods have been 

successfully applied for texture segmentation [24-29], where the input image is 

generally filtered by a family of Gabor filters tuned to several resolutions and 

orientations.  However, it may not be computationally convenient or feasible to 

apply a large number of filters representing a variety of defect patterns. 

 

 This paper considers the issue of designing a single Gabor filter to detect any 

unpredictable defects in a specific textured-surface.  The design objective for the 

best Gabor filter is based on the minimization principle that finds the minimum output 

response of a homogeneous texture pattern in the training process.  By defining a 

non-negative output response, each homogeneous texture region defined in a sliding 

window will have output amplitude close to zero, and any untrained defect region will 

have significantly high output amplitude.  A pixel with zero response can be 

logically considered as a fine particle, and a pixel with large response is a coarse 

particle.  Therefore, all pixels associated with the homogeneous texture will be 

"sifted" out, and only those pixels corresponding to local inhomogeneity will remain 

on the "screen".  The statistical process control principle is then used to set up the 

control limits of output amplitude for distinguishing between defective regions and 

homogeneous regions in the filtered image. 

 

 This paper is organized as follows: section 2 describes the Gabor filtering 

scheme, defines the output response of a filtered image, and discusses the design of 

the best Gabor filter.  Section 3 demonstrates the experimental results for a variety of 
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real textured-surfaces including textile fabric, machined surface, leather, sandpaper, 

and natural wood.  This paper is concluded in Section 4. 

 

2. DISCRIMINATING FILTER DESIGN 

 

    We begin with a brief overview of Gabor filters.  The 1-D Gabor function was 

first defined by Gabor [30], and later extended to 2-D by Daugman [21].  A 2-D 

Gabor filter is an oriented complex sinusoidal grating modulated by a 2-D Gaussian 

function, which is given by  

             )]sincos(2exp[),(),(,, θθφπσθφσ yxjyxgyxG +⋅=  (1) 

where  

             ]2/)(exp[
2

1 232
2 σ

πσ
σ yxg +−= , and 1−=j  

The frequency of the span-limited sinusoidal grating is given by φ  and its 

orientation is specified as θ .  ),( yxgσ  is the Gaussian function with scale 

parameter σ .  The parameters of a Gabor filter are therefore given by the frequency 

φ , the orientation θ  and the scale σ . 

 

The Gabor filter ),(,, yxG θφσ  forms complex valued function.  Decomposing 

),(,, yxG θφσ  into real and imaginary parts gives  

             ),(),(),( ,,,,,, yxjIyxRyxG θφσθφσθφσ +=  (2) 

where 
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Gabor-filtered output of an image ),( yxf  is obtained by the convolution of the 

image with the Gabor filter ),(,, yxG θφσ , i.e. 

             ∫ ∫
∞

∞−

∞
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⋅ dxdyyxGyxf ),(),( ,, θφσ  (3) 

 

    Given a neighborhood window of size W ×W for 12 += kW , the discrete 

convolutions of ),( yxf  with respective real and imaginary components of 

),(,, yxG θφσ  are 
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Define the energy ),,,( θφσyxE  at ),( yx  within the window W×W as  

             ),,,(),,,(),,,( 22 θφσθφσθφσ yxCyxCyxE IR +=  (5) 

 

 Note that the energy defined in eq. (5) is a non-negative real number.  If the 

Gabor-filter parameters are selected so that the corresponding energy is a minimum 

for a specific texture sample, every filtered subimage that has similar texture pattern 

as the training sample will generate the energy value close to zero.  Any subimage 

with the texture pattern different from the training one will yield significantly large 

energy value.  This converts the difficult defect detection problem in complicated 

textured-surfaces into a simple binary thresholding problem where low energy 

represents homogeneous textures and high energy represents local anomalies. 
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 In this research, we are considering a supervised inspection problem, i.e., 

representative samples of the textures of interest are given to help in designing the 

most discriminating filter.  Supervised systems are most appropriate for controlled 

circumstances in industry.  The training sample can be arbitrarily selected from a 

non-defective region of textured surface.  The neighborhood window W ×W is 

selected so that the representation of self-similarity of a homogeneous texture pattern 

is sufficient.  The self-similarity means that all sufficiently large subimages of a 

textured image are considered similar independently of their position.  For a given 

training texture 0T  with size of W ×W , the optimal Gabor-filter parameters ),,( θφσ  

are given by 

             min ),,( 0 θφσTE  

    Subject to  

             maxmin σσσ ≤≤  (6.a) 

             maxmin φφφ ≤≤  (6.b) 

             1800 ≤≤ θ  (6.c) 

where ),,( 0 θφσTE  is the energy of image 0T  centered at (0,0), and it can be 

obtained from eq. (5).  The constraints (6.a), (6.b) and (6.c) specify the possible 

ranges of filter parameters σ , φ  and θ , respectively.  minσ  and maxσ  are the 

minimum and maximum values of σ .  Dunn et al. [31] have proposed a guideline 

on selecting values for the scale parameter σ .  A good practice in implementation is 

to select σ around 10.  minφ  and maxφ  give the minimum and maximum values of 

the frequency parameter φ .  We can generally select 1min =φ  and W=maxφ  (the 

width of the neighborhood window).  We need only to consider the orientation 

parameter θ  in the interval between °0  and °180 .  Symmetry makes the other 
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directions redundant. 

 

    The formulated model above is a nonliear constrained programming problem 

with multiple continuous variables.  This may call for sophisticated optimization 

techniques such as simulated annealing algorithms [32, 33, 34] to determine the best 

parameter values of σ , φ  and θ .  However, empirical study has shown that the 

energy function defined in eq. (5) is not very sensitive to the small variation of the 

parameter values.  We can consider only integer values, i.e., the resolution of 1, for 

each parameter, and still find a best parameter set that makes the energy function 

converge to zero.  Since the training process can be completed off-line, a simple 

exhaustive search will serve the purpose to find a best parameter set *)*,*,( θφσ  that 

gives 0)**,*,( 0 =θφσTE . 

 

    In the inspection process, the selected Gabor filter will slide over the entire 

sensed image in a pixel-by-pixel basis so that the corresponding energy of every pixel 

in the image can be determined.  The filter will give a minimum response close to 

zero when the sliding window covers a homogeneous texture region in the image, and 

will generate large response for an inhomogeneous region.  This transforms texture 

differences into detectable filter output. 

 

    A simple statistical process control principle follows to set up the control limits 

for distinguishing defects from homogeneous textures in the filtered image.  Since 

the desired energy value in the training process is zero, only the upper control limit is 

required to detect energy deviation in the filtered image.  It is given by 

             EE C σµ ⋅+   
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where C is a control constant; Eµ  and Eσ  are the mean and standard deviation of 

energy values in the filtered image of size N×M, i.e., 

             ∑ ∑
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Eµ  and Eσ  can be pre-computed from the filtered image of a defect-free model.  

If the energy value of a pixel in the sensed image is smaller than the control limit 

(threshold) EE C σµ ⋅+ , the pixel is classified as a homogeneous element.  

Otherwise, it is classified as a defective element. 

 

3. EXPERIMENTS AND DISCUSSION 

 

3.1  Experimental results 

 

    In this section we present the experimental results for evaluating the validity of 

the proposed Gabor-filter approach for textured-surface inspection.  All experiments 

are implemented on a personal computer using the C language.  The algorithm is 

tested on a number of real textured-surfaces including textile fabric, milled surface, 

leather, sandpaper and wood.  All input images are 512 ×480 pixels wide with 8-bit 

gray levels.  Only the inner 400 × 400 pixels are used as the effective image region 

so that the filter will not extend outside the image boundaries during convolution.  

The size of the neighborhood window is selected to be 65 ×65 pixels for all test 

samples.  In the training process, a subimage of size 65 × 65 for each 



 12

textured-surface model (the squared frame as shown in Figure 1(a)) is arbitrarily 

selected to determine the best filter parameters. 

 

    Figure 1(a) shows a textile fabric with the shedding defect on the surface.  

Figure 1(b) visually shows the output energy as an intensity function, where 

brightness is proportional to the magnitude of energy.  Figure 1(c) presents the plot 

of the energy function in 3-D perspective.  It can be seen from Figures 1(b) and 1(c) 

that all pixels in the homogeneous texture region have small energy values close to 

zero, and pixels in the defective region have relatively large energy values.  Figure 

2(a) shows a milled surface with a scratch defect.  Figures 2(b) and 2(c) illustrate the 

corresponding detection results.  Figure 3(a) demonstrates a leather surface with 

wear.  The detection of the wear defect is shown as an intensity function in Figure 

3(b), and a 3-D plot in Figure 3(c).  Figure 4(a) shows a sandpaper surface.  It can 

be observed from Figures 4(b) and 4(c) that the proposed Gabor-filter detector can 

easily identify the scratch even though it is a subtle defect on the surface.  Table 1 

summarizes the selected filter parameter values and the resulting energy values for the 

training samples shown in Figures 1(a), 2(a), 3(a) and 4(a).  Note that all trained 

energy values are approximately equal to zero. 

 

Table 1. The trained energy values and filter parameter values. 

Textured image Energy 
E 

Filter parameters 
),,( θφσ  

 Textile fabric (Fig. 1) 0.000000 (12, 62, 180) 

 Milled surface (Fig. 2) 0.000000 (12, 60, 61) 

 Leather (Fig. 3) 0.000001 (12, 45, 98) 

 Sandpaper (Fig. 4) 0.000000 (11, 53, 168) 
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    In the proposed method, there are two major parameters, the neighborhood 

window W× W  and the control constant C for the control limit, which may affect the 

inspection results.  We have also conducted experiments to evaluate the impact of 

varying W and C on the effectiveness of defect inspection. 

 

3.2  Effect of neighborhood window W 

 

    The choice of a proper neighborhood window size must be large enough to 

contain the local, periodic, spatial arrangement of intensity for the homogeneous 

texture in question.  Too small a window size causes insufficient representation of 

texture information, whereas too large a window size increases the computational 

burden.  In this experiment, we vary the window size from 65 ×65, 53 ×53, 41 × 41 

to 25 ×25 pixels to study the impact of window size on the output response of energy.  

Figure 5(a) presents a textile fabric with the shedding defect on the surface.  Figures 

5(b), 5(c), 5(d) and 5(e) show the detection results as an intensity function from 

window sizes 65 ×65, 53 ×53, 41 × 41 and 25 × 25, respectively.  Figure 6(a) shows 

one additional example of a natural wood surface.  The corresponding detection 

results from the four different window sizes are presented in Figures 6(b), 6(c), 6(d) 

and 6(e). 

 

Window sizes 65 ×65 and 53 ×53 generate similar energy representation for the 

defects.  The high-energy regions associated with the defects are significant and 

highly concentrated.  However, as the window sizes are reduced to 41× 41 and 25×

25, the number of high-energy pixels in the defective regions becomes small and 

distributes in a scattering manner.  Based on the detection results in Figures 5 and 6, 



 14

it reveals that an oversized window may not generate better detection, but an 

undersized window may overlook subtle defects.  In actual implementation, the 

choice of a window size in the range between 50 and 60 pixels is suggested for the 

trade-off between effectiveness and efficiency. 

 

3.3  Effect of control constant C 

 

    The control limit is employed to distinguish between homogeneous texture 

regions and defective regions in a filtered image.  The upper control limit of energy 

is placed at a distance EC σ⋅  from the mean Eµ .  Too small the constant value C  

give tight control and may result in false rejection (type Ι error).  Too large the 

constant value C  gives loose control and may generate false acceptance (type Ⅱ 

error).  

 

    For the purpose of visual display, pixels in homogeneous texture regions (under 

the control limit) and pixels in defective regions (above the control limit) are 

represented, respectively, by black and white intensities as a binary image.  Figures 

7(a) and 8(a) show the textured surfaces of a textile fabric and sandpaper, respectively.  

Figures 7(b) and 8(b) present the thresholding results from the control constant 

5.3=C , and Figures 7(c) and 8(c) are the results from the control constant 0.6=C .  

In these test samples, a small control constant will result in minor noise in the 

binarized image.  Based on the observation in Figures 1(c), 2(c), 3(c) and 4(c), the 

energy magnitude of defective elements is significantly larger than that of 

homogeneous elements.  Therefore, a large control constant will generally eliminate 

noise for both defective and defect-free surfaces.  The discrimination between defect 
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and noise is not sensitive to the value of C  since the random noise is generally very 

small in size, compared to the area of a defect. 

 

4. CONCLUSIONS 

 

    In automated surface inspection, one often has to solve the problem of detecting 

small defects which appear as local anomalies embedded in a homogeneous texture.  

Traditional local approaches for automated surface inspection compute a set of 

textural features in a sliding window, and search for significant local deviations in the 

feature values between the sensed image and the model image.  Most inspection 

techniques that rely on high-level textural features suffer from the difficulty and 

time-consuming nature of extracting features from each specific textured-surface. 

 

    In this paper we have presented a Gabor-filter approach for automatic inspection 

of defects in both structural and statistical textures.  The proposed method does not 

depend on the extraction of textural features.  It is based on the output response of 

energy from the convolution of the textured image with a specific Gabor filter.  The 

best parameters of a Gabor filter for a given textured-surface is selected so that the 

energy of the homogeneous texture is zero.  Any unpredictable defect patterns in the 

sensed image will generate significantly large energy values and, therefore, a simple 

control limit (threshold) can be selected to discriminate between homogeneous 

elements and defective elements.  The experiments on structural textures such as 

textile fabric and milled surface and statistical textures such as leather and sandpaper 

have shown the effectiveness of the proposed method to detect non-quantitatively 

measurable defects.  
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Figure 1. (a) The original image of a textile fabric, (b) visual display of the 

energy as an intensity function, (c) the energy function in 3-D perspective. 
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Figure 2. (a) The original image of a milled surface, (b) visual display of the 

energy as an intensity function, (c) the energy function in 3-D perspective. 
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Figure 3. (a) The original image of a leather surface, (b) visual display of the 

energy as an intensity function, (c) the energy function in 3-D perspective. 
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Figure 4. (a) The original image of a sandpaper surface, (b) visual display of the 

energy as an intensity function, (c) the energy function in 3-D perspective. 
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Figure 5. Effect of the window size W ×W：(a) the test sample of a textile fabric, (b) 

result from window size 65 ×65, (c) result from window size 53 ×53, (d) 
result from window size 41×41, (e) result from window size 25×25. 
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Figure 6. Effect of the window size W ×W：(a) the test sample of a wood surface, (b) 

result from window size 65 ×65, (c) result from window size 53 ×53, (d) 
result from window size 41×41, (e) result from window size 25×25. 
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(a) 

(b) C=3.5 (b) C=3.5 

(c) C=6.0 (c) C=6.0 

(a) 

Figure 7. Effect of the control constant C：
(a) the test sample of a textile 
fabric, (b) thresholding result from 
C=3.5, (c) thresholding result from 
C=6.0. 

Figure 8. Effect of the control constant C：
(a) the test sample of sandpaper, 
(b) thresholding result from C=3.5, 
(c) thresholding result from C=6.0. 


