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1. INTRODUCTION

Image segmentation that partitions a given image into meaningful regions is an important
task of image andysis for representation, interpretation and recognition. If the image consists
of man-made objectsin wel controlled Stuations such as indugtria environments, segmentation
can be easy. In applications such as target acquisition in natural scenes, there is no control of

the environment, and segmentation becomes extremely difficuilt.

There exids two mgor goproaches to image segmentation : edge-based and
region-based methods (Hsao et d., 1989). The edge-based agorithms are based on the
discontinuity property of gray-leve vaues. It first detects isolated points, lines or edges in an
image based on abrupt changes in gray level, and then connects these loca discontinuities to
form longer boundaries. The region-based methods rely on the similarity property of gray-leve
vaues. Aress of the image with homogeneous properties are conventiondly found by
thresholding (Otsu, 1979; Tsai and Chen, 1992), region growing (Bed and Jain, 1988; Jain et
a., 1995), region Splitting and merging (Horowitz and Pavlidis, 1976; Browning and Tanimoto,
1982), and clustering (Fukaka, 1980; Jain and Dubes, 1988). The success of these methodsis

highly dependent on the homogeneity of gray-levd intengity or texture.



The detection of object in a complex background is an unresolved problem (Jain et d.,
1997). In this paper, we focus on the extraction of focused objects in a visud image that
contains both complicated foreground and background. The conventional edge-based or
region-based dgorithms cannot be directly applied to the segmentation of focused objectsin a
complicated image such as acar on the dreet or a man in front of a building. Both objects in
focus and objects in the background or foreground result in high gradient magnitude at edge
pixels usng the edge detection operations. Texture-based segmentation (Pal and Pal, 1993)
that involves identifying regions with uniform texture may not extract the complete region of the

focused object sSince it may contain many heterogeneous textures.

The method proposed in this paper is an unsupervised edge-based segmentation. We do
not need a priopri knowledge for the objects of interest as long as they are focused in the
image. It can be observed that in the image formed by an opticd system, objects a a
particular distance from the lens will be focused, whereas objects at other distances will be
blurred by varying degrees depending on their distances. As the distance between the imaged
point and the surface of exact focus increases, the imaged object becomes progressively more
defocused. The edges of focused objects will be sharp and concentrated, but the edges of
background or foreground objects will be blurry and scattering. By measuring the amount of
defocus (blur) for each edge pixel in the observed image, the point on the boundary of the

focused object can be detected.

The basic framework of our approach is as follows. The observed gray-levd image is



first converted to a gradient image using the Sobel edge operator. For every edge point of
interest in the gradient image, the amount of defocus at the pixel is measured by the proportion
of the edge region in a smdl neighborhood window usng the moment-preserving method.
Only the pixds with smal amount of defocus, which correspond to the edge points of focused
objects, are retained. This set of detected pixels seldom characterizes a boundary completely.
Therefore, an edge linking procedure follows to assemble the detected edge pixels of focused
objects into closed boundaries. Pixels outsde the closed boundaries are declared as
background. Findly, a region-filling procedure is carried out to diminate dl pixds outsde the

closed boundaries. The regions of focused objects in the image are isolated accordingly.

This paper is organized as follows: Section 2 overviews the optica geometry of the depth
formula that determines the distance between a point object and the lens as a function of the
amount of defocus. The moment- preserving dgorithm for evauating the amount of defocus a
edge pixes, edge-linking and region-filling processes for isolating regions of focused objects
from the background are then described. Section 3 presents experiments on applying the
proposed segmentation scheme for the extraction of focused objects in a variety of visud

images. The paper is concluded in Section 4.

2. SEGMENTATION BASED ON EDGE BLUR

2.1 The optica geometry

For a convex-lens camerawith alens of focd length F, the relation between the position



of a point in the scene and the position of its focused image is given by the wdl-known lens

law
1+£:_ (1)
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where u is the distance of the point object from the lens and v is the distance of the

focused image from the lens.

Let 0 be apoint object on a visgble surface in the scene. If 0 is not in focus then it
gives rise to a circular image caled the blur circle on the image plane (see Figure 1). Let the
diameter of the blur circle be denoted by d . Pentland (1987) has shown that the relationship
between the depth u of an object point and the diameter d of the blur circle is given by

Fv,
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where v, is the distance between the lens and the image plane, and f is the fnumber
(aperture) of the lens system. As the sensor displacement increases (i.e., v, - V), the

defocusing diameter d increases. If the image detector is behind the focused image (i.e,

V, >V), thedepth u is evauated by eq.(2.8). The object point o isin the background. If
the image detector is in front of the focused image (i.e, Vv, <V), the depth u is then

evaluated by eg.(2.b). The object point o isin the foreground. For a given lens system, the

parametersF, v, and f can be consdered as congtants. Therefore, eq.(2) shows that the

defocus d is an unique indicator for the depth u. The depth formula of eq.(2) can be

rewritten in acondensed form (Lai and Fu, 1992) asfollows.
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where P=Fv,/f, Q=(v,- F)/f, and P and Q are constants with respect to a
given camera setting. When the point object isin the perfect focused distance u,, , the amount
of defocus d should be zero, i.e, u, = P/Q. The depth formulain eq.(3) reveds that the
blur cirde d is gradualy increasing as the point object either moves avay or moves toward
the lens from the focused distance u,. Therefore, a point object in the background or

foreground will have larger blur cirdle d than the point object at the position of perfect focus.

2.2 The measure of defocus

The conventiond blur estimation dgorithms (Pentland, 1987; La and Fu, 1992) generdly
modd the blurred edge as the result of convolving a focused image with a point spread
function that is assumed to be a Gaussan didribution with spatid parameter s . The
parameter s is used as the measure of defocus. It is solved in a very complex way usng
iterative nonlinear search techniques. In this study, we use a more straightforward gpproach to
find the amount of defocus by the moment-preserving technique. The observed image is
initialy converted into a gradient image using the Sobel edge operator so that edge pixels have
large gradient magnitude, and non-edge pixels have approximately zero gradient magnitude.
For each edge point of interest, the proportion of the edge region p, (i.e, the region with
high gradient magnitude) with respect to a smdl neighborhood window in the gradient image is
computed using the moment-presarving principle. A focused edge will result in smdl  p,,

wheress a defocused edge will yidd large p,. p, increases as the relative distance between



the imaged point and the surface of exact focusincreases. Therefore, p, is a messure for the
amount of defocus. The estimation procedure for the proportion of edgeregion p, in a small

window is described in detail asfollows.

Let f (x, y) be the gray-levd of apixd a (x, y) in the observed image. The gradient
of f(x y) isgivenby
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w, (i, ) and w, (i, j) aethe 3" 3 horizontal and vertica Sobel edge operators (Gonzalez
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and Woods, 1992). The magnitude of the gradient is defined by

Y2
a(x y) =N (x y) = [02 + ¢2] (5)

g(x, y) forms the gradient image of the observed image  f (X, y). Figure 2(a) demondtrates

the observed gray-level image of a triangular block. The camera is focused on the table
surface where the block is placed. Figure 2(b) presents the resulting gradient image of the
observed image. It shows that the focused dope close to the table surface results in thin and
sharp edges, and the defocused dope close to the lens yidds thick and scattering edges. The
width of edges increases from lower-I€ft to upper-right in the gradient image as the dope of
the triangular block is defocused progressively from the base to the top. The width of edgesin

the gradient image can be a description for the diameter of blur circle d .



As observed in Figure 2(b) , the gradient image can be divided into two regions, the
bright region that represents the edges with high gradient magnitudes, and the dark region that

represents the interior portions of objects or the background with low gradient magnitudes.

Let the gradient image g(x, y) defined in a locd neighborhood window be the

real-world verson of an ided gradient image that conssts of only two homogeneous regions,

the bright region with a uniform gradient magnitude h,, and the dark region with a uniform
gradient magnitude h, . Denote p, and p, by the proportions of the bright region and the
dark region, respectively, in the idedl gradient imege. Note that h, >h,, O£ p,, p, £1
and p,+ p, =1. For agiven edge point a (x, y), the firgt three moments of g(x, y) are
given by

m=1 &lost) .i=123 6)

N(st) N(xy)

where N(x, y) is the neighborhood window that conssts of neighboring points around

(x, y), and n isthetotal number of pixelsin the window.

By presarving the first three momentsin both real-world gradient image g(x, y) and the

ided gradient image, we can obtain four equations as follows:

P e + P, oy = my (7.8)
P hZ + p, >y = m, (7.b)
P e + p, *hy =m, (7.c)

and



P+ P, =1 (7.d)
There exists a closed-form solution for the four unknown varidbles p,, p,, h, and h,

which are given by (Tsa, 1985)

h, :%[ C, - (cf - 4c, )]/2] (8.9)
h, :g[ (6 - 4c,)") (8)
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P =1- p, 8.d)
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The vdue of p,, Of£ p, £1, gives the proportion of edge region in the neighborhood
window. p, isan indicator for the diameter of blur circle d. Thevaueof p, increases as

the amount of defocus increases.

Figure 3(a) presents the origind gray-levd image of a doll in complex foreground and
background. Figure 3(b) illustrates the corresponding gradient image of the doll image. Note
that the edges of the focused doll are sharp and have thin width, whereas the edges of objects
in both foreground and background are scattering and have thick width. Figure 3(c) showsthe

p, vaues (" 255) of edge pixes as an intensity function, where brightness is proportiond to

themegnitudeof p, . It shows that the focused edges of the doll are darker (i.e., smaller p,



vaues) than the blurred edges in the foreground and background. By selecting a proper

threshold T, for the p, vaues, most blurred edges in the foreground and background can
be effectively diminated, and only focused edges with p, vaues less than the threshold T,

areretained, as seen in Figure 3(d).

2.3 Edge-linking processes

The et of edge pixels described by most edge detection techniques seldom characterizes
a boundary completely because of noise, nonuniform illumination and other effects that
introduce spurious intengty discontinuities (Gonzaez and Woods, 1992). Since the focused
edges are extracted based on the edges detected in the gradient image, the resulting focused
edge pixeds generdly cannot describe the complete boundary of a focused object, as seen in
Figure 3(d). A region cannot be declared a segment unless it is completdy surrounded by
edge pixes. Therefore, the focused edge detection procedure must be followed by an

edge-linking process to assemble focused edge pixdsinto closed boundaries.

While it is possble to use degant and yet complicated edge-linking methods such as
graph-theoretic techniques (Gonzalez and Woods, 1992), curve fitting (Goshtasby and Shyu,
1995), and edge following (Zhou et d., 1989; Xie 1992; Xie and Thonnat 1992), we propose
a ample and graightforward edge linking procedure to evduate the feasbility of the defocus
measurement approach for focused object segmentation. The proposed edge linking scheme
conggts of three processes: dilation, thinning and line linking. Smple dilation (Gonzalez and

Woods, 1992) of the selected edge pixels is firgt carried out to close smdl gaps before



performing the linking operation that connects edge segments in large spacing. The dilation

process is performed on the thresholded p, image (such as the one in Figure 3(d)) by a

smple 3" 3 dructuring eement for 10 iterations. The sdection of 10 iterations is based on
the preiminary experimenta results of 25 test images. The dilation result of the thresholded

p, imagein Fgure 3(d) isillustrated in Figure 3(€).

Following the dilation process, we perform a smple thinning procedure (Gonzalez and
Woods, 1992) so that the focused edges are Xpixd wide. Figure 3(f) shows the thinning
result of the dilated image in Figure 3(€). At this stage, the focused edge segments in smdll
gaps have been connected. To ensure that focused objects are bounded by closed boundaries,
the find edge linking procedure detects dl endpoints of thinned edge lines and connects the
endpoaints to their neighboring edge pixels based on the current postions and the directions of

the line segments.

Let (x,,Y,) beadetected endpoint with direction q(x,, y,) which is determined by
fitting the five connected edge points in the neighborhood of (x,, Y, ) to a straight line using
the least- squares method. The endpoint (x0 : yo) then searches for its connected edge pixe

in a hdf-cirde region with search radius r, 1<r<r and seach angle q”

a(x,. ¥o)- 90° £9° £q(x,,y,)+90°, where r,_, is the maimum search radius. The
search procedureis asfollows:

Forr=1,2, ..., r

max

For Dg =0, =1, +2°,..., £90°
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q" =q(%, o)+ Dg

X =x+rcosq’
y =y+rsng’

If (x*, y*) is a focused edge point, then connect

(%, Ys) to (x',y") and terminate the search.
The search angle q° is dternatdy incremented and decremented by 1° so that the
connected line segment between (x,,y,) and (x",y") has the least deviation from the
direction q(x,, Y, ). Based on the preliminary experimental resuits of 25 test images of size
512" 480 pixels, the maximum search radius r,, = 65 pixes are sufficient to form closed

boundaries. Figure 3(g) showsthe find result of the edge-linking for the doll image, and Figure

3(h) presents the result of superimposing the linked edges on the origind doll image.

The edge linking procedure generdly results in many closed boundaries that include the
outermost contour of a focused object and smal closed boundaries within the object contour.
However, the background (or foreground) region generaly will not produce any closed
boundary in theimage. We implement asmple region-fill dgorithm (Foley et d., 1996) used in
computer graphics gpplications to diminate dl pixes beonging to the background and
foreground. The region-filling agorithm needs a seed pixd to dart the filling process. In this

sudy the pixel with the largest defocus value of  p,, in the image is selected as the seed for

thefilling dgorithm. It ensures that the selected seed is a background pixd. Figure 3(i) presents
the filling results of the doll image. The background region is filled with a gray-tone vaue and
the interior region of the object contour remains white. Figure 3(j) showsthe final segmentation

result for the focused doll.

1



3. EXPERIMENTAL RESULTS

In our implementations, dl dgorithms are programmed in the C language and executed
on a persond computer with a Pentium 166MHz processor. The image Sze is 512° 480
pixels with 256 gray levels. 25 visud images with a variety of focused objects in complex

foreground and background are experimented.

The experiments have examined three sizes of neighborhood windows N (x, y)
induding 15 15, 21" 21 and 31" 31 for the computation of the defocus measure p,. These
three neighborhood windows yied smilar segmentation results with different degrees of
boundary raggedness for the 25 test images. Generdly, too smal the sze of the window may
not include sufficient deta to esimate p, religbly, whereas too large the size of the window
may include superfluous data and increases the computationa requirement. According to the
experimentd results on the 25 test images, the neighborhood window of sze 21" 21 givesthe
most consistent and reliable segmentations. For a21” 21 neighborhood window, the threshold

T, for discriminating focused edges and defocused edges is set to 60 (p, ~ 255) for dl 25
test images. Note that the selected threshold valueof T, is only affected by the window size,

but not the contents in the image since focused edge pixels of any object will result in the same

amount of defocus according to the depth formula

Figure 4 and 5 show the segmentation results of two head images. The regions

corresponding to the focused objects are correctly segmented in both images. The image in



Figure 4(a) contains two persons, the focused one is on the left and the background one is on
the right. Figure 4(b) shows the result of the edge linking process that bounds the focused
person in a closed boundary. As seen in Figure 4(c), the person in the background is
completely diminated from the image. Since the focused person in Figure 4 divides the
background into two isolated regions, the background region shown in the lower-left corner of
Figure 4(c) isretained. Note that the region-filling dgorithm used in this gudy sdects only one
seed pixd to fill the background region. It is not directly gpplicable to segmenting focused
objects that divide the background into two or more digointed regions. A more eegant

regionHfilling agorithm is required for such Stuation.

Figure 6 shows the image of two miniature cars. These two cars are identicd, except that
one car is in focus and the other one is in the foreground. Figure 6(c) illudtrates the
segmentation result for the miniature cars. The focused car has been extracted reliably from the
complex image with the exception that the pole of the flag is missng. Thisis because the pole
is a vary thin object in the image, and the two verticd edges of the pole identified in the
focused edge detection process are merged into a single edge in the dilation process. Using an

eegant edge linking agorithm rather than smple dilation should cope with the problem.

4. CONCLUSION

Traditional segmentation techniques such as thresholding and region growing are based

on gray-level or texture Smilarity of segmented regions. These gpproaches only work well for

images with measurable homogeneous properties. In this paper we focus on the extraction of

13



focused objects in complex visud images that contain both foreground and background
objects. Our segmentation gpproach to the focused object detection problem relies on the
measurement of defocus for object edges. A given gray-levd image is initidly converted to a
gradient image using the Sobel edge operator. For each edge pixd in the gradient image, the
proportion of the blurred edge region in a small neighborhood window ( p, ) is evauated usng
the moment-preserving technique. The moment-preserving method provides a closed-form

solution to obtain the value of p,. The reaulting value of p, is between 0 and 1, and
incresses as the amount of defocus increases. Defocus measure  p,, is used as a powerful cue
to detect edges of focused objects. Edges of focused objects yield smal vaues of p,,
whereas edges of objects in the foreground or background have large values of p,.

Therefore, only those edges with smal amount of defocus are retained in the image. Smple
edge linking scheme is then performed to connect broken edges of focused objects into closed
boundaries. A region-filling procedure follows to diminate al foreground and background

pixels and retain regions of focused objects defined by the closed boundaries.

Experiments on 25 visud images have shown that the proposed method can achieve
correct segmentation, regardiess of the complexity of foreground and background in images.
As seen in the figures in the experimental section, the closed boundaries produced for focused
objects are ragged. This is because the edge-linking scheme implemented in this Sudy uses
only smple dilation process and employs straight line segments to connect broken edges.
Using degant edge-linking dgorithms or curve fitting techniques should generate smoothly
bounded regions of focused objects. Overdl, the measure of edge blur is a feasible approach

for ssgmenting focused objects in complex images.
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