
 1

Segmenting focused objects in visual images 

 

D. M. Tsai and H. J. Wang 
Machine Vision Lab. 

Department of Industrial Engineering and Management 
Yuan-Ze University, Chung-Li, Taiwan, R.O.C. 

E-mail: iedmtsai@saturn.yzu.edu.tw 
(Figures are not available in this report.) 

 

1. INTRODUCTION 

 

Image segmentation that partitions a given image into meaningful regions is an important 

task of image analysis for representation, interpretation and recognition. If the image consists 

of man-made objects in well controlled situations such as industrial environments, segmentation 

can be easy. In applications such as target acquisition in natural scenes, there is no control of 

the environment, and segmentation becomes extremely difficult. 

 

There exists two major approaches to image segmentation : edge-based and 

region-based methods (Hsiao et al., 1989). The edge-based algorithms are based on the 

discontinuity property of gray-level values. It first detects isolated points, lines or edges in an 

image based on abrupt changes in gray level, and then connects these local discontinuities to 

form longer boundaries. The region-based methods rely on the similarity property of gray-level 

values. Areas of the image with homogeneous properties are conventionally found by 

thresholding (Otsu, 1979; Tsai and Chen, 1992), region growing (Besl and Jain, 1988; Jain et 

al., 1995), region splitting and merging (Horowitz and Pavlidis, 1976; Browning and Tanimoto, 

1982), and clustering (Fukaka, 1980; Jain and Dubes, 1988). The success of these methods is 

highly dependent on the homogeneity of gray-level intensity or texture. 
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The detection of object in a complex background is an unresolved problem (Jain et al., 

1997). In this paper, we focus on the extraction of focused objects in a visual image that 

contains both complicated foreground and background. The conventional edge-based or 

region-based algorithms cannot be directly applied to the segmentation of focused objects in a 

complicated image such as a car on the street or a man in front of a building. Both objects in 

focus and objects in the background or foreground result in high gradient magnitude at edge 

pixels using the edge detection operations. Texture-based segmentation (Pal and Pal, 1993) 

that involves identifying regions with uniform texture may not extract the complete region of the 

focused object since it may contain many heterogeneous textures. 

 

The method proposed in this paper is an unsupervised edge-based segmentation. We do 

not need a priopri knowledge for the objects of interest as long as they are focused in the 

image. It can be observed that in the image formed by an optical system, objects at a 

particular distance from the lens will be focused, whereas objects at other distances will be 

blurred by varying degrees depending on their distances. As the distance between the imaged 

point and the surface of exact focus increases, the imaged object becomes progressively more 

defocused. The edges of focused objects will be sharp and concentrated, but the edges of 

background or foreground objects will be blurry and scattering. By measuring the amount of 

defocus (blur) for each edge pixel in the observed image, the point on the boundary of the 

focused object can be detected. 

 

The basic framework of our approach is as follows. The observed gray-level image is 
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first converted to a gradient image using the Sobel edge operator. For every edge point of 

interest in the gradient image, the amount of defocus at the pixel is measured by the proportion 

of the edge region in a small neighborhood window using the moment-preserving method. 

Only the pixels with small amount of defocus, which correspond to the edge points of focused 

objects, are retained. This set of detected pixels seldom characterizes a boundary completely. 

Therefore, an edge linking procedure follows to assemble the detected edge pixels of focused 

objects into closed boundaries. Pixels outside the closed boundaries are declared as 

background. Finally, a region-filling procedure is carried out to eliminate all pixels outside the 

closed boundaries. The regions of focused objects in the image are isolated accordingly. 

 

This paper is organized as follows: Section 2 overviews the optical geometry of the depth 

formula that determines the distance between a point object and the lens as a function of the 

amount of defocus. The moment-preserving algorithm for evaluating the amount of defocus at 

edge pixels, edge-linking and region-filling processes for isolating regions of focused objects 

from the background are then described. Section 3 presents experiments on applying the 

proposed segmentation scheme for the extraction of focused objects in a variety of visual 

images. The paper is concluded in Section 4. 

 

2. SEGMENTATION BASED ON EDGE BLUR 

 

2.1 The optical geometry 

 

For a convex-lens camera with a lens of focal length F, the relation between the position 
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of a point in the scene and the position of its focused image is given by the well-known lens 

law 

Fuv
111

=+                            (1) 

where u  is the distance of the point object from the lens and v  is the distance of the 

focused image from the lens. 

 

Let o  be a point object on a visible surface in the scene. If o  is not in focus then it 

gives rise to a circular image called the blur circle on the image plane (see Figure 1). Let the 

diameter of the blur circle be denoted by d . Pentland (1987) has shown that the relationship 

between the depth u  of an object point and the diameter d  of the blur circle is given by 

dfFv
Fv
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0        for vv >0                    (2.a) 

dfFv
Fv
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+−

=
0

0        for vv <0                    (2.b) 

where 0v  is the distance between the lens and the image plane, and f  is the f-number 

(aperture) of the lens system. As the sensor displacement increases (i.e., vv −0 ), the 

defocusing diameter d  increases. If the image detector is behind the focused image (i.e., 

vv >0 ), the depth u  is evaluated by eq.(2.a). The object point o  is in the background. If 

the image detector is in front of the focused image (i.e., vv <0 ), the depth u  is then 

evaluated by eq.(2.b). The object point o  is in the foreground. For a given lens system, the 

parameters F, 0v  and f  can be considered as constants. Therefore, eq.(2) shows that the 

defocus d  is an unique indicator for the depth u . The depth formula of eq.(2) can be 

rewritten in a condensed form (Lai and Fu, 1992) as follows: 
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where fFvP 0= , fFvQ )( 0 −= , and P  and Q  are constants with respect to a 

given camera setting. When the point object is in the perfect focused distance 0u , the amount 

of defocus d  should be zero, i.e., QPu =0 . The depth formula in eq.(3) reveals that the 

blur circle d  is gradually increasing as the point object either moves away or moves toward 

the lens from the focused distance 0u . Therefore, a point object in the background or 

foreground will have larger blur circle d  than the point object at the position of perfect focus. 

 

2.2 The measure of defocus 

 

The conventional blur estimation algorithms (Pentland, 1987; Lai and Fu, 1992) generally 

model the blurred edge as the result of convolving a focused image with a point spread 

function that is assumed to be a Gaussian distribution with spatial parameter σ . The 

parameter σ  is used as the measure of defocus. It is solved in a very complex way using 

iterative nonlinear search techniques. In this study, we use a more straightforward approach to 

find the amount of defocus by the moment-preserving technique. The observed image is 

initially converted into a gradient image using the Sobel edge operator so that edge pixels have 

large gradient magnitude, and non-edge pixels have approximately zero gradient magnitude. 

For each edge point of interest, the proportion of the edge region ep  (i.e., the region with 

high gradient magnitude) with respect to a small neighborhood window in the gradient image is 

computed using the moment-preserving principle. A focused edge will result in small ep , 

whereas a defocused edge will yield large ep . ep  increases as the relative distance between 
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the imaged point and the surface of exact focus increases. Therefore, ep  is a measure for the 

amount of defocus. The estimation procedure for the proportion of edge region ep  in a small 

window is described in detail as follows. 

 

Let ( )yxf ,  be the gray-level of a pixel at ( )yx,  in the observed image. The gradient 

of ( )yxf ,  is given by 
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
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( )jiwx ,  and ( )jiwy ,  are the 33×  horizontal and vertical Sobel edge operators (Gonzalez 

and Woods, 1992). The magnitude of the gradient is defined by 

( ) ( ) [ ]
21

22,, yx ggyxfyxg +=∇=                    (5) 

( )yxg ,  forms the gradient image of the observed image ( )yxf , . Figure 2(a) demonstrates 

the observed gray-level image of a triangular block. The camera is focused on the table 

surface where the block is placed. Figure 2(b) presents the resulting gradient image of the 

observed image. It shows that the focused slope close to the table surface results in thin and 

sharp edges, and the defocused slope close to the lens yields thick and scattering edges. The 

width of edges increases from lower-left to upper-right in the gradient image as the slope of 

the triangular block is defocused progressively from the base to the top. The width of edges in 

the gradient image can be a description for the diameter of blur circle d . 
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As observed in Figure 2(b) , the gradient image can be divided into two regions, the 

bright region that represents the edges with high gradient magnitudes, and the dark region that 

represents the interior portions of objects or the background with low gradient magnitudes. 

 

Let the gradient image ( )yxg ,  defined in a local neighborhood window be the 

real-world version of an ideal gradient image that consists of only two homogeneous regions, 

the bright region with a uniform gradient magnitude eh , and the dark region with a uniform 

gradient magnitude bh . Denote ep  and bp  by the proportions of the bright region and the 

dark region, respectively, in the ideal gradient image. Note that be hh > , ep≤0 , 1≤bp  

and 1=+ be pp . For a given edge point at ( )yx, , the first three moments of ( )yxg ,  are 

given by 

( )[ ]
( ) ( )

j

yxNts
j tsg

n
m ∑

∈

=
,,

,
1

   , j = 1, 2, 3              (6) 

where ( )yxN ,  is the neighborhood window that consists of neighboring points around 

( )yx, , and n  is the total number of pixels in the window.  

 

By preserving the first three moments in both real-world gradient image ( )yxg ,  and the 

ideal gradient image, we can obtain four equations as follows: 

                          1
11 mhphp bbee =⋅+⋅                         (7.a) 

                          2
22 mhphp bbee =⋅+⋅                        (7.b) 

                          3
33 mhphp bbee =⋅+⋅                        (7.c) 

                       and 
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                          1=+ be pp                                (7.d) 

There exists a closed-form solution for the four unknown variables ep , bp , eh  and bh , 

which are given by (Tsai, 1985) 
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The value of ep , 10 ≤≤ ep , gives the proportion of edge region in the neighborhood 

window. ep  is an indicator for the diameter of blur circle d . The value of ep  increases as 

the amount of defocus increases. 

 

Figure 3(a) presents the original gray-level image of a doll in complex foreground and 

background. Figure 3(b) illustrates the corresponding gradient image of the doll image. Note 

that the edges of the focused doll are sharp and have thin width, whereas the edges of objects 

in both foreground and background are scattering and have thick width. Figure 3(c) shows the 

ep  values ( 255× ) of edge pixels as an intensity function, where brightness is proportional to 

the magnitude of ep . It shows that the focused edges of the doll are darker (i.e., smaller ep  
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values) than the blurred edges in the foreground and background. By selecting a proper 

threshold dT  for the ep  values, most blurred edges in the foreground and background can 

be effectively eliminated, and only focused edges with ep  values less than the threshold dT  

are retained, as seen in Figure 3(d). 

 

2.3 Edge-linking processes 

 

The set of edge pixels described by most edge detection techniques seldom characterizes 

a boundary completely because of noise, nonuniform illumination and other effects that 

introduce spurious intensity discontinuities (Gonzalez and Woods, 1992). Since the focused 

edges are extracted based on the edges detected in the gradient image, the resulting focused 

edge pixels generally cannot describe the complete boundary of a focused object, as seen in 

Figure 3(d). A region cannot be declared a segment unless it is completely surrounded by 

edge pixels. Therefore, the focused edge detection procedure must be followed by an 

edge-linking process to assemble focused edge pixels into closed boundaries. 

 

While it is possible to use elegant and yet complicated edge-linking methods such as 

graph-theoretic techniques (Gonzalez and Woods, 1992), curve fitting (Goshtasby and Shyu, 

1995), and edge following (Zhou et al., 1989; Xie 1992; Xie and Thonnat 1992), we propose 

a simple and straightforward edge linking procedure to evaluate the feasibility of the defocus 

measurement approach for focused object segmentation. The proposed edge linking scheme 

consists of three processes: dilation, thinning and line linking. Simple dilation (Gonzalez and 

Woods, 1992) of the selected edge pixels is first carried out to close small gaps before 
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performing the linking operation that connects edge segments in large spacing. The dilation 

process is performed on the thresholded ep  image (such as the one in Figure 3(d)) by a 

simple 33×  structuring element for 10 iterations. The selection of 10 iterations is based on 

the preliminary experimental results of 25 test images. The dilation result of the thresholded 

ep  image in Figure 3(d) is illustrated in Figure 3(e). 

 

Following the dilation process, we perform a simple thinning procedure (Gonzalez and 

Woods, 1992) so that the focused edges are 1-pixel wide. Figure 3(f) shows the thinning 

result of the dilated image in Figure 3(e). At this stage, the focused edge segments in small 

gaps have been connected. To ensure that focused objects are bounded by closed boundaries, 

the final edge linking procedure detects all endpoints of thinned edge lines and connects the 

endpoints to their neighboring edge pixels based on the current positions and the directions of 

the line segments. 

 

Let ( )00 , yx  be a detected endpoint with direction ( )00 , yxθ  which is determined by 

fitting the five connected edge points in the neighborhood of ( )00 , yx  to a straight line using 

the least-squares method. The endpoint ( )00 , yx  then searches for its connected edge pixel 

in a half-circle region with search radius r , max1 rr << , and search angle ∗θ , 

( ) ( ) oo 90,90, 0000 +≤≤− ∗ yxyx θθθ , where maxr  is the maximum search radius. The 

search procedure is as follows: 

               For r = 1, 2, … , maxr  

                  For θ∆  = 0, o1± , o2± , … , o90±  
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                      If ( )∗∗ yx ,  is a focused edge point, then connect  

                      ( )00 , yx  to ( )∗∗ yx ,  and terminate the search. 

The search angle ∗θ  is alternately incremented and decremented by o1  so that the 

connected line segment between ( )00 , yx  and ( )∗∗ yx ,  has the least deviation from the 

direction ( )00 , yxθ . Based on the preliminary experimental results of 25 test images of size 

512× 480 pixels, the maximum search radius maxr = 65 pixels are sufficient to form closed 

boundaries. Figure 3(g) shows the final result of the edge-linking for the doll image, and Figure 

3(h) presents the result of superimposing the linked edges on the original doll image. 

 

The edge linking procedure generally results in many closed boundaries that include the 

outermost contour of a focused object and small closed boundaries within the object contour. 

However, the background (or foreground) region generally will not produce any closed 

boundary in the image. We implement a simple region-fill algorithm (Foley et al., 1996) used in 

computer graphics applications to eliminate all pixels belonging to the background and 

foreground. The region-filling algorithm needs a seed pixel to start the filling process. In this 

study the pixel with the largest defocus value of ep  in the image is selected as the seed for 

the filling algorithm. It ensures that the selected seed is a background pixel. Figure 3(i) presents 

the filling results of the doll image. The background region is filled with a gray-tone value and 

the interior region of the object contour remains white. Figure 3(j) shows the final segmentation 

result for the focused doll. 
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3. EXPERIMENTAL RESULTS 

 

In our implementations, all algorithms are programmed in the C language and executed 

on a personal computer with a Pentium 166MHz processor. The image size is 512× 480 

pixels with 256 gray levels. 25 visual images with a variety of focused objects in complex 

foreground and background are experimented. 

 

The experiments have examined three sizes of neighborhood windows ( )yxN ,  

including 15× 15, 21× 21 and 31× 31 for the computation of the defocus measure ep . These 

three neighborhood windows yield similar segmentation results with different degrees of 

boundary raggedness for the 25 test images. Generally, too small the size of the window may 

not include sufficient data to estimate ep  reliably, whereas too large the size of the window 

may include superfluous data and increases the computational requirement. According to the 

experimental results on the 25 test images, the neighborhood window of size 21× 21 gives the 

most consistent and reliable segmentations. For a 21× 21 neighborhood window, the threshold 

dT  for discriminating focused edges and defocused edges is set to 60 ( 255×ep ) for all 25 

test images. Note that the selected threshold value of dT  is only affected by the window size, 

but not the contents in the image since focused edge pixels of any object will result in the same 

amount of defocus according to the depth formula. 

 

Figure 4 and 5 show the segmentation results of two head images. The regions 

corresponding to the focused objects are correctly segmented in both images. The image in 
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Figure 4(a) contains two persons, the focused one is on the left and the background one is on 

the right. Figure 4(b) shows the result of the edge linking process that bounds the focused 

person in a closed boundary. As seen in Figure 4(c), the person in the background is 

completely eliminated from the image. Since the focused person in Figure 4 divides the 

background into two isolated regions, the background region shown in the lower-left corner of 

Figure 4(c) is retained. Note that the region-filling algorithm used in this study selects only one 

seed pixel to fill the background region. It is not directly applicable to segmenting focused 

objects that divide the background into two or more disjointed regions. A more elegant 

region-filling algorithm is required for such situation. 

 

Figure 6 shows the image of two miniature cars. These two cars are identical, except that 

one car is in focus and the other one is in the foreground. Figure 6(c) illustrates the 

segmentation result for the miniature cars. The focused car has been extracted reliably from the 

complex image with the exception that the pole of the flag is missing. This is because the pole 

is a very thin object in the image, and the two vertical edges of the pole identified in the 

focused edge detection process are merged into a single edge in the dilation process. Using an 

elegant edge linking algorithm rather than simple dilation should cope with the problem. 

 

4. CONCLUSION 

 

Traditional segmentation techniques such as thresholding and region growing are based 

on gray-level or texture similarity of segmented regions. These approaches only work well for 

images with measurable homogeneous properties. In this paper we focus on the extraction of 
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focused objects in complex visual images that contain both foreground and background 

objects. Our segmentation approach to the focused object detection problem relies on the 

measurement of defocus for object edges. A given gray-level image is initially converted to a 

gradient image using the Sobel edge operator. For each edge pixel in the gradient image, the 

proportion of the blurred edge region in a small neighborhood window ( ep ) is evaluated using 

the moment-preserving technique. The moment-preserving method provides a closed-form 

solution to obtain the value of ep . The resulting value of ep  is between 0 and 1, and 

increases as the amount of defocus increases. Defocus measure ep  is used as a powerful cue 

to detect edges of focused objects. Edges of focused objects yield small values of ep , 

whereas edges of objects in the foreground or background have large values of ep . 

Therefore, only those edges with small amount of defocus are retained in the image. Simple 

edge linking scheme is then performed to connect broken edges of focused objects into closed 

boundaries. A region-filling procedure follows to eliminate all foreground and background 

pixels and retain regions of focused objects defined by the closed boundaries. 

 

Experiments on 25 visual images have shown that the proposed method can achieve 

correct segmentation, regardless of the complexity of foreground and background in images. 

As seen in the figures in the experimental section, the closed boundaries produced for focused 

objects are ragged. This is because the edge-linking scheme implemented in this study uses 

only simple dilation process and employs straight line segments to connect broken edges. 

Using elegant edge-linking algorithms or curve fitting techniques should generate smoothly 

bounded regions of focused objects. Overall, the measure of edge blur is a feasible approach 

for segmenting focused objects in complex images. 
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