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1. INTRODUCTION 

 

Depth measurement is one of the most important tasks in computer vision for the 

applications of 3-D object recognition, scene interpretation and robotics. Various methods 

for depth measurement have been proposed [1]. Stereo vision [2, 3] is perhaps the most 

popular technique to obtain the depth image of a 3-D object. It generally uses two cameras 

to estimate stereo disparity and then recovers the 3-D structure of an object. The camera 

model of a stereo system involves a matching process between two images. This requires 

reliable extraction of features from the separate 2-D images and the matching of these 

features between images. Both of these tasks are non-trivial and can be computationally 

expensive. 

 

In contrast to stereo vision, Pentland [4, 5] has proposed a depth-from-defocus (DFD) 

method to measure the depth information using a single camera so that the image-to-image 

correspondence process is not required. DFD methods are based on the fact that in the 

image formed by an optical system, objects at a particular distance from the lens will be 

focused, whereas objects at other distances will be blurred by varying degrees depending on 

their distances. As the distance between the imaged point and the surface of exact focus 
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increases, the imaged object becomes progressively more defocused. By measuring the 

amount of defocus (blur) of a point object in the observed image, the depth of the point 

object with respect to the lens can be recovered from the geometric optics. 

 

The blur estimation algorithms generally determine the blur estimate from either the 

image’s power spectrum in the frequency domain, or from the image’s point spread function 

in the spatial domain [6]. Pentland [7] has proposed two methods to measure the amount of 

defocus. The first method requires only one image and is based on measuring the blur of 

edges which are step discontinuity in the focused image. The blurred edge is modeled as the 

result of convolving a focused image with a point spread function that is assumed to be a 

Gaussian distribution with spatial parameter σ . The parameter σ  is used as the measure 

of defocus, and has a one-to-one correspondence to the depth. The second method 

requires two images and is based on comparing the two images formed with different 

aperture diameter settings. A ratio of the Fourier powers between the two images is shown 

to be related to the amount of defocus.  

 

Following Pentland’s second method, many blur estimation algorithms have been 

developed [6, 8, 9, 10, 11]. These algorithms generally require two or more images 

obtained by changing one of the three intrinsic camera parameters: 1) distance between the 

lens and the image detector plane, 2) focal length of the lens, and 3) diameter of the lens 

aperture (f-number). These involve relatively low mechanical movement of the camera and 

need specialized camera system whose parameter setting can be controlled precisely. 
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Lai et al. [12] have proposed a generalized algorithm that follows Pentland’s first 

method for estimating the spatial parameter σ  of a Gaussian point spread function. The 

spatial parameter σ  is decomposed into the horizontal and vertical components xσ  and 

yσ  so that the estimation of the edge orientation is not required. The horizontal and vertical 

intensities of an observed edge is assumed to be the convolution of the focused image and 

the Gaussians with spatial parameters xσ  and yσ , respectively. The blur estimation 

problem is then formulated as a nonlinear equation. The parameter xσ  and yσ  are 

evaluated using an iterative solution based upon Newton’s method in the vicinity of 

piecewise linear edges. Since no closed-form solution exists for their model, the nonlinear 

search procedure can be very time-consuming and the solution may get stuck in some local 

minimum. 

 

    In this paper, we use the moment-preserving principle, which gives closed-form 

solution and is computationally fast, to estimate the amount of defocus from a single image. 

The basic framework of our approach is as follows. The observed gray-level image is 

initially converted into a gradient image using the Sobel edge operator. For every edge point 

of interest in the gradient image, the proportion of the edge region ep in a small 

neighborhood window centered at the edge point is then computed using the 

moment-preserving method. A focused edge will result in small value of ep, while a 

defocused edge will yield large value of ep. The proportion of blurred edge ep is, 

therefore, used as the description of degradation of the point spread function for estimating 

the depth. In addition to the use of the depth formula derived from geometric optics for 

depth estimation, artificial neural networks (ANNs) are also proposed in this study to 
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compensate for the estimation error from the depth formula. 

 

This paper is organized as follows : Section 2 overviews the geometry of the depth 

formula. Section 3 describes the moment-preserving procedure for estimating the proportion 

of blurred edge region ep  in the neighborhood window. The ANNs used for 

compensating for the estimation error are discussed in Section 4. Section 5 presents the 

experimental results including the effect of varying sizes of the neighborhood window on 

estimation errors, and the depth accuracy of the geometric depth formula and the ANNs. 

The paper is concluded in Section 6. 

 

2. THE DEPTH FORMULA 

 

     For a convex-lens camera with a lens of focal length F, the relation between the 

position of a point in the scene and the position of its focused image is given by the 

well-known lens law 

                              
1 1 1

ν
+ =
D F

                          (1) 

where D is the distance of the point object from the lens and ν  is the distance of the 

focused image from the lens. 

 

Let o be a point object on a visible surface in the scene, and ′oand ′′o be its 

corresponding points in the focused image and the image detector plane, respectively. If o 

is not in focus then it gives rise to a circular image called the blur circle on the image detector 

plane (see Figure 1). Let the diameter of the blur circle be denoted by bd . Pentland [7] has 
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shown that the relationship between the depth D of a point object and the diameter bd  

of the blur circle is given by 

                D
F

F dfb
=

− −
ν

ν
0

0

        for  ν ν0>                (2.a) 

                 D
F

F dfb
=

− +
ν

ν
0

0

        for  ν ν0<               (2.b) 

where 0ν  is the distance between the lens and the image detector plane, and f is the 

f-number (aperture) of the lens system. As the sensor displacement increases (i.e., ν ν0− ), 

the defocusing diameter bd  increases. Note that defocusing is observed for both positive 

and negative sensor displacement. If the image detector is behind the focused image  (i.e., 

ν ν0> ), the depth D is evaluated by eq.(2.a). If the image detector is in front of the 

focused image (i.e., ν ν0< ), the depth D is then evaluated by eq. (2.b). For a given lens 

system, the parameters F, ν0 and f can be considered as constants. Therefore, eq.(2) 

shows that the defocus bd  is an unique indicator of depth D. The depth formula of eq.(2) 

can be rewritten in a condensed form [12] as follows : 

                              D
P

Q db
=

±
                          (3) 

where P F f= ν0/ , Q F f= −( )/ν0 , and P and Q are constants with respect to a 

given camera setting. The depth formulation of eq.(3) can be used to simplify the calibration 

procedure. 

 

3. MEASURE OF DEFOCUS 
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The depth formula of eq.(3) shows that there is a one-to-one correspondence between 

the diameter of blur circle bd  and the object depth D. The blur size bd  is generally 

assumed to be proportional to the spatial parameter σ  of the point spread function, i.e., 

bd k= ⋅σ  where k is assumed to be a constant for a given lens system [7, 11, 12, 13]. 

Quantitative measurement of defocus is difficult and requires accurate modeling of the point 

spread function. Unlike the conventional blur estimation algorithms that assume the point 

spread function is a Gaussian distribution with spatial parameter σ  and solve for the value 

of σ  in a complex way, we use a more straightforward approach to find the amount of 

defocus by the moment-preserving technique. The observed image is initially converted into 

a gradient image using the Sobel edge operator so that edge pixels have large gradient 

magnitude, and non-edge pixels have approximately zero gradient magnitude. For each edge 

point of interest, the proportion of the edge region ep (i.e., the region with high gradient 

magnitude) with respect to the neighborhood window in the gradient image is computed 

using the moment-preserving principle. A focused edge will result in small ep, whereas a 

defocused edge will yield large ep. ep increases as the distance between the imaged 

point and the surface of exact focus increases. Therefore, ep is a measure for the amount 

of defocus. The estimation procedure for the proportion of edge region ep in a small 

window is described in detail as follows. 

 

Let fxy(,) be the gray-level of a pixel at (,)xy  in the observed image. The 

gradient of fxy(,) is given by 

∇ =












fxy
g

g

x

y

(,)  
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where       x x
ij

g fx iy jw ij= + + ⋅∑∑ ( , ) (,) 

            y y
ij

g fx iy jw ij= + + ⋅∑∑ ( , ) (,) 

The horizontal and vertical Sobel edge operators xw ij(,) and yw ij(,), − ≤1 i, 

j≤1, are given in Figure 2. The magnitude of the gradient is defined by  

gxy fxy(,) (,)= ∇ = [g gx y

2 2+ ]12/  

gxy(,) forms the gradient image of the observed image fxy(,). Figure 3(a) 

demonstrates the observed gray-level image of a multi-step block. The camera is focused on 

the lower steps of the block (lower-right in the image), and the upper steps are close to the 

lens and result in defocused image (upper-left in the image). Figure 3(b) presents the 

resulting gradient image of the observed image. It shows that the focused steps result in thin 

and sharp edges, and the defocused steps yield thick and scattering edges. The width of 

edges increases from lower-right to upper-left in the gradient image as the multi-step block 

is defocused progressively from lower steps to upper steps. The width of edges in the 

gradient image can be a description for the diameter of blur circle bd . 

 

As observed in Figure 3(b), the gradient image can be divided into two regions, the 

bright region that represents the edges with high gradient magnitudes, and the dark region 

that represents the interior portions of objects or the background with low gradient 

magnitudes. Given a local neighborhood window centered at the edge point of interest, the 

gradient image defined in the window can be converted into a binary image that contains 

only white region (i.e., high gradient magnitude for edges) and black region (i.e., low 

gradient magnitude for backgrounds) using the moment preserving method. The proportion 
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of the white region with respect to the entire window region represents the width of the 

imaged edge in the gradient image and, therefore, indicates the diameter of blur circle bd . 

Let the gradient image gxy(,) defined in a local neighborhood window be the 

real-world version of an ideal gradient image that consists of only two homogeneous regions, 

the bright region with a uniform gradient magnitude eh, and the dark region with a uniform 

gradient magnitude hb. Denote ep and bp by the proportions of the bright region and 

the dark region, respectively, in the ideal gradient image. Note that e bh h> , 0≤ ep, 

bp≤1 and e bp p+ =1. For a given edge point at (,)xy , the first three moments of 

gxy(,) are given by 

                      [ ]j

j

st N xy

m
n

gst=
∈
∑1

(,)
(,) (,)

   , j=123,, 

where N xy(,) is the neighborhood window that consists of neighboring points around 

(,)xy , and n is the total number of pixels in the window. 

 

By preserving the first three moments in both real-world gradient image gxy(,) 

and the ideal gradient image, we can obtain four equations as follows: 

e e b bp h p h m⋅ + ⋅ =1 1
1 

e e b bp h p h m⋅ + ⋅ =2 2
2 

e e b bp h p h m⋅ + ⋅ =3 3
3 

                      and 

                          e bp p+ =1 

There exists a closed-form solution for the four unknown variables ep, bp, eh and bh, 
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which are given by [14]  

 

 

                         [ ]bh c c c= − − −
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The value of ep, 0 1≤ ≤ep , gives the proportion of edge region in the neighborhood 

window. The larger value of ep, the larger amount of defocus. In this study, ep is 

assumed to be proportional to the diameter of blur circle bd , i.e., b ed k p= ⋅ , where k 

is a constant. Therefore, the depth formula derived in eq.(3) can be rewritten as 

                             D
P

Q pe
=

′
′ ±

                           (4) 

where ′ =P kF fν0/ , ′ = −Q k F f( )/ν0 , and ′P  and ′Q  are constants for a given 

camera setting. 

 

The constants ′P  and ′Q  in eq.(4) can be determined initially once and for all by a 

suitable camera calibration. We may manually collect n data points of the measured 
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depths iD , i n=12,,...,, at different distances from the camera, and use the 

moment-preserving method to calculate their corresponding proportions of edge region 
ie
p  

in the local window. Let D D D Dn
T=( , ,...,)1 2  and 

e e e e

Tp p p p
n

=( , ,...,)
1 2

. ( , )D p
e

 

gives a set of n known data pairs. Then, the best estimates of ′P  and ′Q , in the 

least-squares sense, are given by  

[ ] [ ] [ ]′
′









 = − − ⋅ −



 ⋅

−Q

P
D D D C

T T

1 1 1
1

 

where C= (D pe1 1
⋅ , D pe2 2

⋅ ,…, D pn en
⋅ ). Once ′P  and ′Q  are fixed for a given 

camera setting, the numerical relationship between the depth D and ep is uniquely 

determined by eq.(4). 

 

4. ANN APPROACH FOR ERROR COMPENSATION 

 

    Since the depth formula of eq.(3) arises from the geometric optics of lens imaging, 

the diameter of blur cycle bd  only represents the geometric blur. However, the actual blur 

is not due to geometric defocus alone [15]. The geometric depth formula may yield nonlinear 

errors in calculating the depth D owing to optical aberrations, vignetting, etc. To 

overcome this problem, we use artificial neural networks (ANNs) to compensate for the 

errors resulted from the depth formula. The advantages of an ANN in estimation 

applications are that it provides a model-free approach to reducing the estimation error, and 

it generates nonlinear interpolation for input data which are previously unseen in training. 

 

    An ANN is specified by the topology of the network, the characteristics of the 



 11 

nodes and the processing algorithm. The neural networks used in this work are multilayer 

feedforward neural networks composed of an input layer, a single hidden layer, and an 

output layer. Each layer is fully connected to the succeeding layer. The outputs of nodes in 

one layer are transmitted to nodes in another layer through links. The link between nodes 

indicates flow of information during recall. During learning, information is also propagated 

back through the network and used to update connection weights between nodes. 

 

Let jo  be the output of the previous layer and ijw  the connection weight between 

the ith node in one layer and jth node in the previous layer. The total input to the ith node of 

a layer is 

i ij
j

jw onet= ⋅∑  

A hyperbolic tangent activation function is used here to determine the output of the node i, 

which is given by 

i io f
e e

e e

i i

i i
= =

−
+

−

−( )net
net net

net net 

In the learning phase for such a network, we present the training pattern { }T Ip= , 

where pI is the pth node in the input layer, and ask the network to adjust the weights in all 

the connecting links such that the desired outputs { }kD  are obtained at the output nodes. 

Let { }kO  be the evaluated outputs of the network in its current state. For a training pattern 

the squared error of the system can be written as 

( )E D Ok k

k

= −∑12
2
 

The generalized delta-rule learning algorithm [16] is applied to adjust the weights such that 
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the error E is a minimum. A detailed derivation of the learning procedure can be found in 

[17].    

Two neural networks are developed in this study. The first neural network, denoted by 

ANN1, is a three-layer back-propagation network with two nodes in the input layer, seven 

nodes in the hidden layer, and one single node in the output layer. The topology of the 

network ANN1 is illustrated in Figure 4. The input vector 1T = (p De, ) of the network 

ANN1 includes two components, which are 

pe= the proportion of edge region in the neighborhood window obtained from  

    the moment-preserving method. 

D= the depth of an edge point derived from the depth formula of eq.4. 

(p De, ) correspond to the two nodes in the input layer in sequence. In the learning phase of 

the network, the desired value of the node in the output layer is the actual depth D* 

known a priori. A pair of (Input,Output) = (T D1,
*) forms the training sample for the 

network. In the recall phase of the network, the measured depth is simply given by the value 

of the node in the output layer. 

 

It has been found [13] that the edge orientation is crucial to the estimation of the 

amount of defocus. A good strategy for improving the estimation accuracy of depth is to 

calibrate the constants ′P  and ′Q  in eq.(4) using known data points in separate 

orientations, and then present the information of edge orientations to the network. The 

gradient ∇ =fxy g gx y(,) ( , ) used for computing the gradient magnitude as described 

in section 3 provides the additional information of edge orientation. The orientation of an 

edge point with gradient ( , )g gx y  is given by 
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                      θ = −tan( )1
g

g

y

x

                            (5) 

The value of θ  along with the signs of gx and gy can uniquely define the edge 

orientation between 00and 3600. 

 

The proposed second neural network, denoted by ANN2, therefore takes the edge 

orientation, and constants ′P  and ′Q  calibrated in individual orientations as the 

additional input. The topology of the network ANN2 is the same as that of the ANN1, 

except that ANN2 has five nodes in the input layer. The topology of the network ANN2 is 

shown in Figure 5. The input vector T p D P Qe2= ′ ′( , ,, , )θ θ θ  of the network ANN2 

consists of five components, which are 

p De,   = the same as those defined previously for the network ANN1 

  θ     = the edge orientation given by eq.(5) 

P Qθ θ
′ ′,  = the constants in eq.(4) calibrated in the orientation of θ  

 

In the training phase of the network ANN2, pairs of ( , )*T D2  form the training 

samples with finite number of edge orientations. In the recall phase of the network, the edge 

orientation evaluated by eq.(5) is converted to the nearest orientation θ  used in training, 

and the corresponding Pθ
′  and Qθ

′  are selected from a look-up table. The value of the 

node in the output layer of the network gives the depth of the edge point. 

 

5. EXPERIMENTAL RESULTS 
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In this section we present experimental results for evaluating the performance of the 

proposed depth estimators. In our implementations, all algorithms are programmed in the C 

language and executed on a personal computer with a Pentium 66 MHz processor. The 

image size is 512480×  pixels with 256 gray levels. The camera is set up so that the 

camera is 415mm from the tabletop, and the optical axis of the camera is perpendicular to 

the table surface. All experiments are performed with the point of sharpest focus 

approximately set at the top of the table. A three-step block as shown in Figure 6 is used as 

the benchmark in the experiments to evaluate the performance of the proposed depth 

estimators. The first step ( the one closest to the table ), the second step and the third step 

( the one closest to the camera ) are 21 mm, 40 mm and 40 mm in deep, respectively. 

 

The first series of experiments use the three-step block to evaluate the effect of varying 

sizes of the neighborhood window on estimation errors of depth. The neighborhood window 

selected in this work is of circular shape. Figure 7(a) depicts the pe value versus the depth 

of each step of the block for the neighborhood windows of radii 45, 35, 25 and 19 pixels. It 

can be seen from the figure that the value of pe increased as the depth decreases, i.e., the 

amount of defocus increases as the object gets closer to the camera. The 

root-mean-squares (RMS) depth errors obtained by the depth formula for individual radii of 

the neighborhood windows are presented in Figure 7(b). It shows that too small the size of 

the window may not include sufficient data to estimate pe reliably, whereas too large the 

size of the window may include superfluous data and increases the computational 

requirement. Based on the experimental results, the neighborhood window of radius 35 
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pixels is valid for accurate estimation of pe, and is used in the subsequential experiments. 

 

The second series of experiments are to use the three-step block to evaluate the 

performances of the geometric depth formula and the neural networks ANN1 and ANN2. In 

order to analyze the effect of heights and orientations of objects with respect to a fixed 

camera, we have experimented the block placed at seven heights with respect to the 

tabletop varying from 0 mm to 60 mm in 10 mm increments. The block at each of the seven 

heights is rotated through eight orientations in approximately 450 increments. For each 

image of the block at a given height and orientation, we select two edge points from each 

step of the block as the test samples. Figure 8 shows the images of the three step block at 

seven different heights. Of the seven heights, data sampled from the heights 0 mm, 20 mm 

and 50 mm are used for both calibrating the constants ′P  and ′Q  in eq.(4), and training 

the neural networks ANN1 and ANN2. Data sampled from the heights 10 mm, 30 mm, 40 

mm and 60 mm are used for testing the estimation accuracy of the depth formula of eq.(4) 

and the compensation capability of ANN1 and ANN2. Therefore, a total of 336 ( 3 steps × 

2 edge points per step × 7 heights × 8 orientations ) samples is generated. Of the 336 

samples, 144 are used as the training patterns, and the remaining 192 untrained samples are 

used as the test set. 

 

Furthermore, in order to evaluate the effect of gray-level contrasts on the estimation 

accuracy of depth, we have also experimented the placement of the three-step block on two 

backgrounds with distinct gray-levels. The average gray-level of the block in the image is 

100, and the average gray-levels of the two backgrounds used in the experiments are 202 
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and 145. The block on the background with gray-level 202 is referred to as a high contrast 

image, whereas the block on the background with gray-level 145 is referred to as a low 

contrast image. Each contrast category contains 336 samples generated as described above. 

These two contrast categories generate following four combinations of experiments : 1) Both 

training samples and test samples are collected from high contrast images, denoted by 

E H H( , ), 2) Training samples are generated from low contrast images, but test samples 

are collected from high contrast images, denoted by E LH(, ), 3) Both training samples 

and test samples are generated from low contrast images, denoted by E LL(,), and 4) 

Training samples are generated from high contrast images, but test samples are collected 

from low contrast images, denoted by E H L( ,). 

 

Now we evaluate the performance of the proposed depth estimators under two 

conditions : 1) calibrating and training the system without using the information of edge 

orientations, and 2) calibrating and training the system with the information of edge 

orientations. 

 

Let the constants ′Pand ′Q  in eq.(4) be calibrated, and the network ANN1 be 

trained by the 144 known data samples without considering the information of edge 

orientations. Table 1 summarizes the experimental results of the root-mean-squares (RMS) 

depth errors in percentage for the geometric depth formula and the network ANN1. It can 

be seen from Table 1 that the experiment of E H H( , ) gives the best performance with 

the RMS error of 1.77% from the depth formula. The proposed methods also work well 

when the training environment does not coincide with the testing environment. The 
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experiment E LH(, ) compares favorably with the experiment E H L( ,), and even the 

experiment E LL(,). The performance of the experiment E LH(, ) is as good as that 

of the experiment E H H( , ) if the network ANN1 is applied. Therefore, in an application 

of the proposed methods for accurate depth estimation, high-contrast images with the same 

training environment and scene environment should be employed if the scene environment 

can be easily controlled. If the scene environment cannot be predicted beforehand, the use 

of relatively low-contrast images in training is a good strategy to generate good depth 

estimation. 

 

The neural network approach with the network ANN1 generally yields better depth 

estimation, especially for the experiments E H L( ,), E LL(,), and E LH(, ), 

compared with the geometric depth formula. In general, the RMS error from the depth 

formula is within 5%, and the RMS error from the network ANN1 is within 3% for the 

camera at 145 mm distance. These results compare competitively with the measured errors 

reported in references [10, 12, 18]. 

 

Now let the constants ′P  and ′Q  in eq.(4) be separately calibrated using the 

known data samples in each edge orientation. Table 2 presents the experimental results of 

the RMS depth errors in percentage from the geometric depth formula and the network 

ANN2 that uses the additional information of edge orientations as the input. The trend 

resulting from the experiments in Table 2 are consistent with that in Table 1. The experiment 

E H H( , )yields the best performance with the RMS error of 0.64% from the network 

ANN2. The experiment E LH(, )  yields twofold improvement over the 
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experimentE H L( ,) when the training environment does not coincide with the scene 

environment. 

 

The network ANN2 works extremely well even for low-contrast images and 

non-coincident environments in training and testing. The improvement of the network ANN2 

versus the depth formula is about twofold. Given that the depth formula is used for 

estimating the depth in the experiments, the use of additional information of edge orientations 

for training individual ′P  and ′Q  does not generate significant improvement in the 

measured depth errors. However, if the neural network approach is used for measuring the 

depth in the experiments, the network ANN2 that uses edge orientations to the input layer 

yields significant improvement in the measured errors, compared with the network ANN1 

that does not use the information of edge orientations as the input. In general, the RMS error 

from the geometric depth formula is still within 5% even with the information of edge 

orientations, and the RMS error from the network ANN2 is within 2% as seen in Table 2. 

Based on the experimental results described above, the proposed moment-preserving 

method for estimating the proportion of edge region pe and the proposed neural network 

approach have demonstrated their efficiency and effectiveness for edge-based depth 

estimation. 

 

6. CONCLUSION 

 

In this paper, the geometric depth formula is described by D P Q pe= ′ ′ ±/( ), where 

′P  and ′Q  are constants for a given camera setting, and pe is the proportion of edge 
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region in a small neighborhood window. To compute the value of pe, the original gray-level 

image is converted into a gradient image using the Sobel edge operator. For each edge point 

of interest in the gradient image, the proportion pe  is then evaluated using the 

moment-preserving principle. The moment-preserving method provides a closed-form 

solution to obtain the value of pe, and is computationally fast. The resulting value of pe is 

between 0 and 1, and increases as the amount of defocus increases. In addition to estimating 

the depth by using the geometric depth formula, two artificial neural networks ANN1 and 

ANN2 are also proposed in this study to compensate for the estimation error of the depth 

formula. 

 

The best depth accuracy is obtained for objects in high-contrast images where the 

training environment coincides with the scene environment. The proposed methods also 

work well for objects that their training images and scene images have different gray-level 

contrasts. Experimental results have shown that the RMS error from the geometric depth 

formula is within 5%, and the RMS errors from the networks ANN1 and ANN2 are within 

3% and 2%, respectively. 

 

The interior edge that distinguishes between two homogeneous surfaces of an object 

generally has very low gradient magnitude in the gradient image. Since the proposed 

moment-preserving approach is based on the measurement of the proportion of edge region 

pe in a local window in the gradient image, this restricts the proposed method in its current 

form to be only applicable to the edges between objects and the background. 
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Figure 1. Image formation and defocus in a convex lens 
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Figure 2. The horizontal and vertical Sobel edge operators. 
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     Figure 3. Images of a multi-step block. (a) The original gray-level image. (b)             

The corresponding gradient image. The camera is focused on the top              

of the table where the block is located. 
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Figure 4. The system architecture of the network ANN1. 
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             Figure 5. The system architecture of the network ANN2. 

(Only partial connections are presented.) 
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Figure 6. A three-step block used for experiments. 
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Figure 7. (a) The plots of the proportion of edge region pe against the depth D for 

varying sizes of windows. (b) The measured errors of depth for varying sizes of 

windows. 
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 (a) H = 0 mm 
 

            
 (b) d = 10 mm (e) H = 40 mm 
 

            
 (c) H = 20 mm (f) H = 50 mm 
 

            
 (d) H = 30 mm (g) H = 60 mm 
 
      Figure 8. The images of the three-step block at seven different heights.              

H represents the distance from the base of the block to the top of the 
table 
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Table 1. Comparison of RMS depth errors from the depth formula and the network ANN1 

under different gray-level contrasts for training and testing. (The information of 

edge orientations is not applied. ) 

 

RMS depth error (%) Experiment 

Depth formula Network ANN1 
E H H( , ) 

E LH(, ) 

E LL(,) 

E H L( ,) 

1.77 

3.25 

4.16 

4.27 

1.97 

1.97 

2.75 

2.75 

 

 

 

 

 

Table 2. Comparison of RMS depth errors from the depth formula and the network ANN2 

under different gray-level contrasts for training and testing. (The information of 

edge orientations is utilized. ) 

 

RMS depth error (%) Experiment 

Depth formula Network ANN2 
E H H( , ) 

E LH(, ) 

E LL(,) 

E H L( ,) 

1.22 

2.88 

4.06 

4.16 

0.64 

1.00 

1.52 

2.00 

 

 


