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1. INTRODUCTION

The proper functioning of a machined part is in many instances largely dependent on
the quality of its surface. Engineering properties such as fatigue, hardness and hesat transfer
are dffected by surface finish. Severd devices have been developed to measure surface
roughness (Amstead et d. 1987). The smplest procedure is a visud comparison with an
edtablished standard, while the most commonly used method is to employ a diamond stylus
to trace over the surface being investigated and to record a magnified profile of the

irregularities. These are generdly time-consuming processes, demanding expensve human

inteligence.

In this study, we investigate the measurement of surface roughness of shaped and
milled parts usng machine vison. Machine vision dlows the assessment of surface roughness
without touching or scratching, which are two problems with traditional methods. It provides
the advantages of a measurement process for 100% ingpection and the flexibility for
measuring the part under test without fixing it in a precise postion. In contragt to the

gylus-based methods that trace the surface roughness in one dimension, machine vision can



generate many more readings of a two dimensond surface in a given time and, therefore,

makes the estimation method for roughness measurement more reliable.

Over the years, the non-contact optical methods have attracted researchers  attention
for the assessment of surface roughness. Mogst of the methods are based on datistica
measures of gray-leve imagesin the spatid domain. Al-Kindi et d. (1992) examined the use
of a digitd image sysem in the assessment of surface qudity. The measure of surface
roughness is based on spacing between gray-level pesks and number of gray-leve pesks
per unit length of a scanned line in the gray-level image. This 1-D based technique does not
fully utilize the 2D information of the surface image, and is sengdtive to lighting and noise.
Luk and Huynh (1987) utilized the gray-leve histogram (didtribution) of the surface image to
characterize surface roughness. They found the ratio of the spread and the mean vaue of the
distribution is a nonlinear, increasing function of average surface roughness R, (center line
average). Since their method is based soley on gray-leve histogram, it is sengtive to the
uniformity and degree of illumination present. In addition, no information regarding the spatid
digtribution of periodic features can be obtained from the gray-level hisogram. Hoy and Yu
(1991) adopted the dgorithm of Luk and Huynh to characterize surface quaity of turned
and milled specimens. In thelr experiments, they found one exception that the ratio of the
spread and the mean of the gray-level digribution is not a monotonically increasing function
of surface roughness and, therefore, the vadue of the ratio may lead to incorrect
measurement. Hoy and Y u dso addressed the possibility of using the Fourier transform (FT)
to characterize surface roughness in the frequency domain. However, only smple visud

judgement of surface images in the frequency planeis discussed. No quantitative description



of FT features for the measurement of surface roughness is proposed. Other non-contact
optica proximity methods, which include lasers and fiber optics (Scott and Baul 1980) and
complicated Moaire interferometric technigue (Chen et d. 1994) avalable for surface

roughness measurement are hardware limited and require high eguipment cost.

In this sudy, we use machine vison to esimate the surface roughness of machined
parts generated by shaping and milling processes. The quantitative measures of surface
roughness are extracted in the spatid frequency domain using the two-dimensond Fourier
transform. The Fourier transform gpproach has the desirable properties of noise-immunity,
orientationa dependency, and enhancement of periodic features. A FT pattern feature is
proposed to distinguish between shaped and milled surfaces in a given range of surface
roughness. A st of five roughness features extracted from the frequence plane is presented

as the measures of surface roughness for both shaped and milled surfaces.

Artificia neurd networks (ANNs), which take roughness features as the input, are
applied to classfy the surface of interet among a set of standard surfaces of known
roughness values. Two neurd network modds are developed. The first network is for
workpieces in a fixed orientation, which minimizes the deviatiion of roughness measures.
Only the roughness features are used as the input to the network. The second network is for
workpieces in arbitrary orientations, which gives maximum flexibility for ingpection tasks.
The roughness features dong with the surface direction derived from the FT frequency plane
are used as the input to the network. By using these tow ANNs with roughness festures

extracted from the frequency plane, accurate and flexible automated visud measurement of



surface roughness can be achieved.

This paper is organized as follows. Section 2 discusses the extraction of surface
roughness features in the spatid frequency domain. Section 3 presents the neural network
models for estimating surface roughness. A feature selection procedure that chooses the best
subset of features as the input to the network is dso addressed in this section. Section 4
presents the experimental results for two sets of shagped and milled specimens with various

roughness standards. The paper is conclude in Section 5.

2. EXTRACTION OF ROUGHNESS FEATURES

The fird and most important task in roughness measurement with machine vison is to
extract roughness features of surfaces. Typicd noise processes tend to dramaticaly ater
locd spatid variaion of intendty while having rdatively uniform representetion in spatid
frequency (Liu and Jernigan 1990). Frequence domain features should be less sendtive to
noise than spatial domain features. Therefore, in this study we choose to extract features of
surface roughnessin the spatid frequency domain using the 2-D Fourier transform. The FT
is paticularly useful for surfaces in noisy conditions due to tool wear marks, dust and dirt.
The FT chaacterizes the surface image in terms of frequency components. The
periodicdly-occurring features such as feedmarks and toolmarks present in the gray-leve
image can be eadly observed from the magnitude of the frequency components.
Furthermore, the FT isrotation dependent, i.e,, rotating the origind image by an angle will

rotate its corresponding frequency plane by the same angle. The lay direction of a surface



can be preserved accordingly.

Let f(x,y) bethe gray levd of apixd a (x,y) in the origind image of sze

N~ N pixes centered on the origin. The discrete 2D Fourier trandform of  f(x,y) is

given by
N, Ny
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for u,v=- ?, - ?+1 ..... 0, 1,..., ?- 1 The discrete 22D Fourier tranform can

be expressed in the separatable forms with 1-D Fourier transforms, and obtained efficiently

using the fast Fourier transform agorithm (Gonzalez and Woods 1992).

The Fourier transform is generdly complex; that is
F(u,v) = R(u,v)+ j>I(u,v)
where R(u,v) and I(u,v) arethe red and imaginary components of F(u,V), respectively.
The power spectrum P(u,v)of f(x,y) is defined by
P(u,v):|F(u,v)|2 = R(u,v)+1%(u,v)
In this study we have focused on roughness measurements of shgped and milled surfaces.

Figures 1(a), 1(b) and 1(c) show the surface images of three shaped specimens with the
roughnessvauesof R, 6.3, 25 and 100 nm, respectively, where R, is the distance
between the highest peak and the lowest valley in the trace of the surface. Figures 1(d), 1(e)
and 1(f) visudly show the power spectra P(u,v) of the surface images as an intensity

function, where brightness is proportiond to the magnitude of P(u,v). Figures 1(g),1(h)



and 1(i) present the plots of the power spectrum functions in 3D perspective. It can be
seen from Figures 1(d) through 1(i) that the origin in the center of the power spectrum map

has the largest magnitude of P(u,v). Note that a series of gpproximately equally-spaced

gpots of decreasing magnitude of power spectrum are deployed dong the horizontal line on
both sdes of the origin. The distance between adjacent bright spots represents the
frequency of the periodic feedmarks in the surface image. The finer the surface roughness,
the larger the distance(i.e., the higher the frequency) is resulted. We can aso observe that
the line passing through these equdly-spaced bright spots in the power spectrum map is

perpendicular to the direction of lay in the origind surface image.

A smilar observation can aso be made for the milled specimens with three roughness

vauesof R, 1.6, 12.5 and 50 nm as shown in Figures 2(a), 2(b) and 2(c), respectively.

By comparing Figures 1(a)- 1(c) and Figures 2(a)-2(c), we found that the surface patterns of
the shaped specimens are more regular and present less noise than those of the milled
pecimens. Therefore, multiple diffuse points around the origin in the power spectrum map
(Figures 2(d)-2(i)) are generated for milled specimens. These multiple diffuse points

correspond to nonperiodic features in the origina image.

There may exigt a large set of features that can be extracted from the surface image in
the frequency domain. However, it is logica to sdect only such festures tha their
guantitative vaues are a monotonic function (either increasing or decreasing) with respect to
roughness vaues. This ensures the easy condruction of robust estimators for roughness

measurement. A sat of 28 features (Liu and Jernigan 1990) derived in the frequency domain,



which were used for classfying naturd textures rather than surface roughness in the field of
texture analyss, have been investigated in our preiminary experiments. It has been found
that most of the 28 features are not monotonic functions of surface roughness. In this study,
we propose five roughness features which are generdly (or, gpproximately) monotonic

functions of surfaceroughness R, . The quantitative definitions of these features are given

below. Let

P(u,v)
a P(u,v)

(uv)+(00)

p(u,v) =

be the normalized power spectrum, which has the characteristics of a probability
digtribution.
1. Major peak frequency F,
Fo=(u 4} )

where (u,,v, )arethe frequency coordinates of the maximum pesk of the power spectrum,
i.e.,

p(u,.v; ) = max{ p(u,v)," (uv)* (00)}
Feature F, is the distance of the maor pesk (u,,v,)from the origin (0,0) in the
frequency plane. The plotsof F, vaues againg roughness values R, for both shaped
specimens with R, values of 6.3, 12.5, 25, 50 and 100 nm, and milled specimens with
R, vauesof 1.6, 3.2, 6.3, 12.5, 25 and 50 rm are shown in Figure 3. It demonstrates
thet the value of F, decreases as the surface roughness R, increases for both shaped

and milled surfaces.



2. Principa component magnitude squared F,

where |, isthe maximum eigenvaue of the covariance matrix of p(u,Vv). The covariance
meatrix M is given by

_&ar(u®) Var(uv)u
" ar(w) Var(v?)y

forwhich Var(u?)= & u® xp(u,v)

(uv) (00)

Var(v¥)=  Q v xp(u,v)

(uv)*(0.,0)

Var(uv) =Var(wu) = é uv xp(u,v)

(uv)H(00)
Feature F, indicates the variance of components aong the principa axis in the frequency
plane. From Figure 4, it can be seen that the value of F, decreases as the surface

roughness R incresses.

3. Average power spectrum  F,

= aP(uv)/S

(uv):(00)
where S=N?-1 for a suface image of Sze N~ N. Fedaure 3 is an increasing

function with respect to the surface roughness R, as seen infigure5.

4. Central power spectrum percentage F,

F4 = ()I:,)(LO) x100%

a a P(uv)

u

Based on eg.(1), the frequency component at the origin (the center) of the frequency plane



has the maximum power spectrum. It can be seen from Figure 6 that the vaue of F,

decreases as the surface roughness R, increases for both shaped and milled specimens.

5. Ratio of mgor axisto minor axis F
R=(1,/1,)"
where |, and |, arethe maximum and minimum eigenvalues of the covariance meatrix of
p(u,v). Figure 7 shows the plots of festure F, againgt the roughness R, for both
shaped and milled specimens. Although festure F, is not a strictly monotonic function of
roughness R, , it generdly agrees with the monotonic tendency when the value of R,

getslarger.

As mentioned previoudy, the directiondity of the frequency components in the
frequency planeindicates the lay direction of asurface in the spatid plane. This phenomenon
can be further observed in Figure 8, where a shaped specimen with roughness R, of
25mm isrotated by an angle 30°. Note that rotating the origind surface image by an angle
30° (Figure 8(a) versus Figure 1(b)) rotates its corresponding frequency plane by the same
angle. The eigenvector associated with eigenvalue |, for the covariance matrix of  p(u,v)
indicates the direction of the principd axis in the frequency plane, and can be basically used
to estimate the direction of a surface. However, a prdiminary experiment has shown thet the
edimation error of  the eigenvector approach is within 5°. To further improve the
estimation accuracy of direction, we purpose a now direction measure q in this study.

From Figures 1(d)-1(f), 2(d)-2(f) and 8(b), we found that the line passng through a series



of equaly-spaced bright spots aso passes the origin (0,0) in the frequency plane. Since
the digtribution of frequency components is symmetric to the central component a (0,0),
we can estimate the dope angle q of the best fitting line, in the least sguares sense, by

165,(W)u

q=tan ag-——~
&s,(u?)4

where S,(uv) = & (U )W(u,v,)

S(U) = (u ) iy, v)

w(uv,) = —PU)
& p(u.v,)
=1
n is the totd number of sample points used for line fitting, which corresponds to the n
largest pesksin p(u,v),i.e,
p(U,v;)> p(Usy,Vie ), P(U,Y) 1 {p(uyv)t, for i=12...n
w(u.,Vv. ) gives the weight for sample point (u,,v; ) according to its magnitude of power
gpectrum. The measured direction is perpendicular to the lay direction of a surface. In this
sudy, asampleszeof n =20 isfound to be sufficient to estimate the orientation for both

shgped and milled specimens. A prdiminary experiment has shown that the estimation

accurecy of thedirection q iswithin 1°.
3. NEURAL NETWOROKS FOR ROUGHNESS MEASUREMENT

Once the roughness features are extracted, the second measurement task is to develop

the estimation models based on the vaues of the sdected roughness festures. From

10



Figures 3 through 7, we found that the aforementioned festures F, through F, are
nonlinear functions with respect to the roughness vdue R, . Furthermore, the vaues of

these roughness features are affected to some extent by the specimen's orientation present to
the camera The nonlinear relaionships among surface orientation, roughness festures

F,- F; and the corresponding roughness vdue R, ae an extremdy difficult, if not

impossible, task to andyze. In this sudy, we use atificid neura network ( ANN )
techniques to develop the estimation models for roughness measurement. The advantage of
an ANN in measurement gpplications is that it provides a modd-free approach for
accurate estimation without knowing the exact nonlinear function between the input festures
and the output targets. Two neura networks are developed, one for measuring the surface
roughness of machined parts in a fixed orientation, and the other one for measuring the
surface roughness of machined parts in arbitrary orientations. Both neural networks used in
thiswork are multilayer feedforward neura networks with a back-propagation learning rule

(Pao 1989).

An ANN is specified by the topology of the network, the characteristics of the nodes
and the processng agorithm. The proposed back-propagation neurd networks are
composed of an input layer, a Sngle hidden layer, and an output layer. Each layer is fully
connected to the succeeding layer. The outputs of nodes in one layer are transmitted to
nodes in another layer through links. The link between nodes indicates flow of information
during recdl. During learning, information is also propagated back through the network and

used to update connection weights between nodes.

11



Let o, bethe output of the jth node in the previous layer and w; the connection

weight between the ith node in one layer and the jth node in the previous layer. The

tota input to the ith node of alayeris

A hyperbalic tangent activation function is used here to determine the output of the node i ,

whichisgive by

net; net;

e™ - e
o = f(neti):m

In the learning phase for such a network, we present the training pattern T ={1 |}, where

|, isthe pth component of the vector T entered into the pth node in the input layer,

and ask the network to adjust the weights in al the connecting links such that the desired

outputs {D, } are obtained at the output nodes. Let {O, } be the evauated outputs of the
network in its current state. For a training pattern the squared error of the system can ke
written as

1
E:_é(Dk_ Ok)2
2%

The generdized deta-rule learning dgorithm (Rumehart et d.1986) is gpplied to adjust
the weights such tha the error E is a minimum. A detalled derivation of the learning

procedure can be found in (Pao 1989)

The first back-propagation neural network used for measuring the surface roughness of

machined parts in afixed orientation, denoted by ANN, , is a three-layer network with one

through five nodes in the input layer, depending on the number of roughness festures



sdected, 10 nodes in the hidden layer, and one single node in the output layer. With
machined parts placed in afixed orientation, the vaues of roughness fegtures can be reliably

extracted with minimum deviation. The input vector 1, to the network is a subset of
roughnessfeatures { F,,F,,F;,F,,F }. Thetopology of the network ANN; is illustrated
in Figure 9. In the learning phase, the desired vaue of the node in the output layer is the
actud roughness R, known a priori. A pair of (Input,Output)= (I,,R_, ) forms the
training sample for the network ANN, . In the recall phase of the network, the estimated

roughness R, isSmply given by the vaue of the node in the output layer.

The second back-propagation neurd network, denoted by ANN,, is used for

measuring the surface roughness of machined parts in arbitrary orientations. With machined
parts in arbitrary orientations, the measurement task can be carried out flexibly without the
requirements of fixtures and human intervention for dignment. The topology of the

network ANN, as shown in Figure 10 is identical to that of the network ANN, except
that ANN, uses the direction feature g as the additiond input. The input vector |, to
the network ANN, is, therefore, contains the orientation festure q and a subset of
roughnessfeatures { F,,F,,F;,F,,F }. g isused to compensate for the effect of surface

orientation on the measurement error of surface roughness.

To determine an optima subset of the five roughness features without exhaudtively

evaluating dl possble combinations of festures for both neurd networks ANN, and

ANN, , we used the method of sequential forward selection (Nadler and Smith 1993). The

13



successive addition feature salection scheme proceeds as follows:
1. Sdect thesngle best feature.
2. Try dl remaining features with the subset dready chosen in the previous stage, one
a atime, and add the one that gives the best improvement.

3. Continue the procedure above until al features are added.

In this work, the performance of a neurd network with a given subset of roughness
features (input vector) is measured by the root mean square ( RMS) of roughness arors for

aset of test data, which is defined by

7 Jd/2
e -

RMS = €3 (R - Rea ) / NU
€ ’ ¥
e u

where R:mxj is the actud roughness vaue, and Iimax, is the estimated roughness vaue

from the neurd network for the jth sample in the test set. N is the total number of

samplesin the test set.
4. EXPERIMENTAL RESULTS

In this section we present experimenta results for evauating the vdidity of the
proposed roughness features and the performance of the neurd networks for roughness
measurement. In our implementations, dl dgorithms are programmed in the C language
and executed on a persona computer with a Pentium 100MHz processor. The grabbed

image is of sze 512x480 pixels with 256 gray levels. Standard comparison shaped

14



specimens (JS B 0659) containing five roughness values of R, 6.3, 12.5, 25, 50 and
100 mm, and standard comparison milled specimens containing Six roughness vaues of

R_ 16,32, 6.3, 125, 25 and 50 mm are used in the experiments to test the vaidity of

max

the proposed agorithms.

[llumination of the specimens is accomplished by a regular fluorescent light source
which is Stuated a an angle of approximately 10 degrees incidence with respect to the
norma of the specimen surface. The camerais dso set up a an angle of gpproximately 10
degrees with respect to the norma of the specimen surface, and a a distance of
approximately 30 cm from the specimen surface. This setting enhances the characteristics of
surface patterns, and gives the best qudity of surface images. Figure 11 shows the setup of
the machine vison system used in the experiments. Throughout the experiments, the camera
parameters are fixed for both shgped and milled specimens with the roughness range

between 1.6 nm and 100 nm.

For network ANN, that measures surface roughness of parts in a fixed orientation,

we dlow the specimens to be rotated with minor angles so that precise dignment can be

diminated. Each specimen of agiven R, vaue was rotated between - 4° and 4° in

aoproximately 1° increments; two images of 512" 480 pixds were grabbed in each
orientation. For each origind image of 512" 480 pixds we ahitrally sdected three

distinct subimagesof 256~ 256 pixds as the training samples for network ANN,. The

subimage of 9ze 256~ 256 pixds corresponds to approximatey 4.5 4.5 mm of a

gpecimen surface. The sampling procedure above was aso repeated, but with only one

15



subimage of 256~ 256 pixels in each grabbed image, to generate the required test

samples.

For network ANN, that measures surface foughness of parts in arbitrary orientations,

we dlow the specimens to be rotated by large angles between - 40° and 40° in
aoproximately 5° increments. The sampling procedures to generate the required training

set and test set for network  ANN, are the same as those for network  ANN, , except that
ANN, involves 17 didtinct orientations and ANN, involves only 9 orientations for each
specimen of agiven roughness R, . Note that none of the test samples is a redundancy of

the training samples. Table 1 summarizes the number of training samples and the number of

test samples used in each network for each machining.

Before we evduate the performance of the neurd networks for roughness

measurement, there is an interesting feature that deserves mention here. Let |F(00)| be
the Fourier spectrum of the origin in the frequency plane, where
[F(00) =+/P(00)
It has been observed that the value of |F(00)| is distributed between 25000 and

37500 for 780 training samples of shaped specimens regardless of specimen orientations,
and between 40000 and 51000 for 936 training samples of milled specimens. Figure 12

shows the histogram of the Fourier spectrum |F(0,0)| based on the 1716 training samples.

Two wdll-separated distributions are resulted in the histogram, each representing a class of

machining. By selecting the threshold a 39000, the feeture of |F(00)| can be used to

16



distinguish between shaped specimens and milled specimens. A 100% recognition rate has
been achieved for the 260 test samples of shaped specimens and 312 test samples of milled
gpecimens. Since the observation above is based on the shaped specimens with roughness

range between 6.3mm and 100 mm and the milled specimens with roughness range
between 1.6 nm and 50 nm, the distribution of the Fourier spectrum |F(0Q)| for

roughness va ues outs de the specified roughness ranges may need further investigation.

The performances of networks ANN,and ANN, for shaped and milled specimens

are discussed separately in the following subsections.

4.1 Experiments on Shaped Specimens

The sequential feature sdection procedure described in section 3 is agpplied to

determine the best combination of roughnessfeatures F; through F, in terms of minimum
RMS roughness error. The results of feature sdection for networks ANN, (fixed
orientetion) and ANN, (arbitrary orientation) are reported in Table 2 and Table 3,
respectively. Each entry in Table 2 and Table 3isthe  RMS roughness error in- mm of 90

and 170 test samples, respectively. The firgt row in Table 2 showsthe RMS errors when

only a single roughness feature is used as the input to the network  ANN; . It indicates that
major pesk frequency F, yiddsthe minimum RMS eror of 0.0098 mm. The second
row in Table 2 shows the results of two features that contain festure F, selected in the

previous stage and any one of the four remaining features. For two features selected, the
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combination of features F, and F, yiddsthe minimum RMS error of 0.0232m. The

remaining entries in rows 3, 4 and 5 of Table 2 are interpreted in a Smilar way as above.
From Table 2, it can be seen that adding more number of roughness features to the network

may not improvethe RMS error. Major pesk frequency F, seems to dominate al other
roughness features. This may be due to the fact that feature F, is a robugt indication of

feedmark spacing, and feed distance has been shown (Amstead et d. 1987) to be highly
correlated with the roughness height. Therefore, for shaped specimens in a fixed

orientation, maor pesk frequency F, is the best feature for messuring the surface

roughness.

Table 4 presents the mesn R, vaues maximum R~ vaues minimum
R, vaues and variancesof R, vaues for the test samples of shaped specimens using
the network ANN, with festure F, as the input. The results reved that the messured
mean R, vaues are dmos identicd to the standards. Recall that the specimens under
test are dlowed to be rotated within  +4°. Network ANN, with input fature F, has
shown its robustness and stability for roughness messurement with R, variances less

than 0.001 mm.

For shaped specimens in arbitrary orientations, Table 3 shows that mgor peak

frequency F, dso outperforms al other roughness features when only a single festure is
used as the input to the network ANN, . The overdl minimum RMS error of 1.3177

nmm is generated by the combination of three featuresF, ,F, and F,. The improvement
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inthe RMS error with features F, ,F, and F, is not very sgnificant, compared to the
RMS error of 1.9474nm with festure F, aone. Table5 showsthemean R, vaues,
maximum R, vaues minimum R, vaues and variancesof R vaues for the test
samples of shaped specimens using the network ANN, with direction festure q and
roughness festures F, ,F, and F, as the input. Even though the specimens under test
are roteted arbitrarily within large angle range of  + 40°, the measured mean R, vaues
are dso dmogt identical to the standards. As expected, the variance of R, vaues
generated by network ANN,, is larger than that generated by network ANN, owing to
arbitrary orientations of specimens present to the camera. The resulting variances of R,

vaues are generdly less than 0.6mm for various roughness sandards.

4.2 Experiments on Milled Specimens

Table 6 summarizes the results of the sequentia feature sdection procedure for milled
specimens in fixed orientation (£ 4°). The first row in Table 6 adso shows that magjor peak

frequency F, yidds the minimum RMS error of 0.0093 nm when only a sngle
roughness feature is used as the input to the network ANN, . From Table 6, the overdl
minimum is given by the combingtion of two festures F, and F, withthe RMS error of
0.0087 nm, which is not datigicaly different from 0.0093nm given by sngle festureF, .
Table 7 presents the mean and deviation of R, values for the test samples of milled
specimens using the network  ANN, with festure F, as the input. The results also show

that the measured mean R, Vvaues are dmost identica to the standards, and the
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variancesof R, vaues are smaller than 0.001 mm. Therefore, major pesk frequency F,

isavery effective and reliable feature for measuring the roughness of both shaped and milled

aurfaces in afixed orientation.

Table 8 reports the results of the sequential feature selection procedure for milled
specimensin arbitrary orientations (+ 40°). Given that only one roughness fegture is used as

the input to the network ANN,, , the feature of average power spectrum F, yidds the
minmum RMS error of 1.2863 nm. The overdl minimum RMS error of 0.8311nm is
given by the combination of threefestures F,,F, and F,. Table 9 presents the mean and
devigtionof R, valuesfor the test samples of milled specimens using the network  ANN,
with the input vector containing the direction festure q and the roughness festures F,,
F, and F,. Thereating mean R vaues are dso very close to the standards. As
expected, thevarianceof R, vaues generated by network ANN, is significantly larger
than that generated by network ANN, due to arbitrary orientations of specimens present
to the camera. For workpieces in arbitrary orientations, the R, variances of milled

specimens are larger than those of shaped specimens. Thisis due to the fact that the surface
patterns of shaped specimens are more regular and have less noisy dements, compared with

the surface patterns of milled specimens, as seen in Figures 1 and 2.

Based on the experimentd results above, the proposed machine vision gpproach can
be gpplied effectively and reiably to measure the surface roughness of interest among a set

of sandard surfaces of known roughness vaues.



5. CONCLUSION

In this paper, we have proposed a non-contact machine vison system for measuring
roughness of shaped and milled surfaces. It provides a rdiable assessment of surface
roughness over a given 2-D area rather than a single 1-D trace. Since shaped and milled
surfaces are directiona petterns with the gppearance of periodic, pardld feedmarks, the
roughness features are extracted in the spatia frequency domain based on the 2-D Fourier

transdform.

The FT gpproach characterizes the surface image in terms of frequency components.
The magnitude of frequency components enhances the periodicaly- occurring features
present in the surface image, and the directiondity of frequency components preserves the
lay direction of a surface. Five roughness features have been proposed in this work. Among
these features, major peak frequency F, , which represents the frequency (or, inversdy, the
waveength) of the feedmarks in the image, generdly outperforms other roughness features
for roughness measurement. A direction feature g has aso been derived for measuring the

direction of the surface present to the camera.

Two neural networks ANN, and ANN, are developed. Network ANN; is used
for machined parts placed in afixed orientation, and network ANN,, is for machined parts

placed in random orientations. As expected, roughness vaues measured by network

ANN, are very accurate and reliadble, even when the specimens under test are rotated

within £4°. No exact dignment for test parts is required to apply network ANN, .
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Roughness values measured by network ANN, are aso accurate but with larger deviation,
compared with thosed measured by network ANN, . Since network ANN,, alows parts

of interest to be present to the camerain arbitrary orientations, it is flexible for measurement

gpplications without the requirements of human intervention and dignment devices.

Based on the experimentd results described previoudy, the recommended roughness
features for shgped and milled surfaces in fixed and arbitrary orientations are summarized in

Table 10.

The computationd time of the Fourier tranform with sze 256" 256 is
approximately 2 seconds on a Pentium 100MHz persona computer. It compares favorably
with the traditiond stylus-based methods. We believe the computationa time can be further
reduced with a high-end persona computer or workgation, or with hardware
implementation of the Fourier transform for ontline, red time measurement of surface

roughness.
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@R, =6.3mm (bR, =25mM

(d)

i

() )

Figure 1. (8), (b), (c) Surface images of shaped specimens with roughnessR,,, values of 6.3,

25 and 100nm, respectively; (d), (e), (f) the corresponding power spectra
displayed as an intendty function; and (g), (h), (i) the corresponding power
spectrain 3-D perspective.
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(©) R, =100mm
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Figure 1. (Continued)
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Figure 2. (a), (b), (c) Surface images of milled specimens with roughnessR,, values of 1.6,
125, and 50mm, respectively; (d), (e), (f) the corresponding power spectra
displayed as an intensity; and (g), (h), (i) the corresponding power spectrain 3-D
perspective.
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Figure 2. (Continued)
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Figure 3. The relationship between festure F, and roughness R, -
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Figure 4. The relationship between festure F, and roughness R, .
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Figure 5. The relationship between feature F, and roughness R, .
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Figure 6. The relationship between festure F, and roughness R, .
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Figure 7. The relaionship between festure F, and roughness R, .
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Figure 8. (8) The surface image of a shaped specimen with R, 25nmm, which is rotated
by an angle 30° with respect to the origind image in Figure 1(b); (b) the
corresponding power spectrum displayed as an intensity function. Note that the
frequency direction is perpendicular to the lay direction.
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Figure 10. The system architecture of ANN, for workpiecesin arbitrary orientations.
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Figure 11. The machine vison setup used in the experiments.

Number of samples

Figure 12. Digtribution of the Fourier spectrum |F(0,0)| for shaped and milled

samples.
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Table 1. Numbers of training samples and numbers of test samples used in the

experiments.
Network
Network ANN; Network ANN,
Machining (Fixed orientation) (Arbitrary orientation)
Training samples 270 510
Shaping ng samp
Test samples 90 170
Training samples 324 612
Milling ng samp
Test samples 108 204
Table 2. The results of feature selection for network ANN; (shaped
gpecimens in a fixed orientetion).
Best
Sdedtion F F, Fs F, Fs features
procedure selected
1 festure 0.0098 | 3.2241 | 5.9915 | 5.6449 | 25.7127 E”
2 fegtures 0.1984 | 0.2303 | 0.2404 | 0.0232 F.F.
3 features 0.1392 | 0.2501 | 0.2152 F,F..F,
4 features 0.2459 | 0.2397 F.F.F.F
5 features 0.1864 F.F.,F,.F,F




Table 3. The results of feature sdlection for network ANN, (shaped
specimens in abitrary orientations).

Feature Best
SHedtion F F, Fs F, Fs features
procedure selected
1 feature 1.9474 | 2.6683 | 9.8628 | 9.4411| 21.7451 F
2 features 1.7561 | 1.6038 | 1.6960 | 1.5507 F.F.
3 features 1.7943 | 1.3541 | 1.3177 FFF*
4 features 1.4185 | 1.5642 F..Fs.F,.F,
5 features 1.9312 F..Fs Fi.F, Fs

network ANN; with asingle roughness feature .

Table 4. Mean and deviation of measured R, vaues of shaped specimens for the

Shaped specimens

R . (nm) standards

6.3s

12.5s

25s

50s

100s

Mean

6.295

12.503

25.005

50.002

100.000

Maximum

6.297

12,515

25.029

50.002

100.000

Minimum

6.290

12.487

24.985

50.002

100.000

Vaiance

0.000

0.000

0.000

0.000

0.000

Table 5. Mean and deviation of measured R, vaues of shaped specimens for the

network ANN, with three roughnessfestures F,, Fs and F,.

Shapes specimens

Rmax

(mm) standards

6.3s

12.5s

25s

50s

100s

F.F

117511

Mean

6.306

12.519

25.137

50.607

100.220

Maximum

6.802

12.817

26.281

52.607

100.766

Minimum

6.043

12.293

23.613

49.419

99.044

Vaiance

0.028

0.014

0.511

0.607

0.155




Table 6. The result of feature sdlection for network ANN; (milled specimens in a fixed

orientation).
Festurg Best

Sdedtion F F, Fs F, Fs features
procedure selected

1 feature 0.0093 | 6.3541 | 1.5551 | 2.4378 | 14.2074 F

2 features 0.1142 | 0.0792 | 0.1191 | 0.0087 F.F*

3 features 0.1179| 0.1326 | 0.0954 F,F..F,

4 features 0.2338 | 0.3201 F..R.F R

5 features 0.1976 F.F.F R F

Table 7. Mean and deviation of messured R, Vvaues of milled specimens for the
network ANN; with asingle roughness features F .

. . R (nmm) standards
Milled specimens e
16s | 3.2s | 6.3s | 1255 | 255 | 50s
Mean | 1.600 | 3.203 | 6.300 | 12.500 | 25.000 | 50.000
Maximum | 1.610 | 3.208 | 6.300 | 12.500 | 25.000 | 50.000
Minmum| 1.573 | 3.168 | 6.300 | 12.500 | 25.000 | 50.000

Vaiance| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

Table 8. The reault of feature sdection for network ANN, (milled specimens in arbitrary

orientation).
Featurg Best

SHedion F F, Fs F, Fs features
procedure selected

1 feature 1.8681 | 4.1019 | 1.2863 | 3.5123 | 151313 F,

2 features 1.0492 | 1.1539 1.0748 | 1.1421 Fo Fy

3 features 0.8866 0.8561|0.8311| F,, F,R*

4 features 0.9250 0.8386 Fy, F,Fs, Fy

5 features 0.8748 F. FL R, Fi Ry




Table 9. Mean and deviation of messured R, vaues of milled specimens for the
network ANN, with three roughness featuresF,, F, and F,.

) ) R (mm) standards
Milled specimens an
16s | 32s | 6.3s | 1255 | 255 | 50s
Mean | 1.765 | 3.085 | 6.717 | 12.523 | 24.874 | 49.878
Maximum | 2.283 | 3.656 | 7.477 | 14.393 | 26.751 | 50.630
Mirinum| 1.401 | 2.635 | 5.648 | 9.496 | 20.174 | 48.967

Vaiance| 0.053 | 0.068 | 0.222 | 1.259 | 0.856 | 0.152

F.F LK

Table 10. The recommended roughness features for measuring roughness of shaped and
milled surfaces.

. . _ Neura | Recommended
Machining | Orientation _ Comments
network | input features

. - Accurate and reliable measurements
Fixed ANN; Fy

- Limited rotated angles of surface

Shaping - Good measurement with minor
Arbitrary | ANN, | d.F.F.F, | deviation

- Flexible for measurement tasks

. - Accurate and reliable measurements
Fixed ANN; F

- Limited rotated angles of surface

Milling - Good measurement with minor
Arbitrary | ANN, | d.Fs,F.Fs | deviation

- Flexible for measurement tasks




