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1. INTRODUCTION 

 

    The proper functioning of a machined part is in many instances largely dependent on 

the quality of its surface. Engineering properties such as fatigue, hardness and heat transfer 

are affected by surface finish. Several devices have been developed to measure surface 

roughness (Amstead et al. 1987). The simplest procedure is a visual comparison with an 

established standard, while the most commonly used method is to employ a diamond stylus 

to trace over the surface being investigated and to record a magnified profile of the 

irregularities. These are generally time-consuming processes, demanding expensive human 

intelligence. 

 

    In this study, we investigate the measurement of surface roughness of shaped and 

milled parts using machine vision. Machine vision allows the assessment of surface roughness 

without touching or scratching, which are two problems with traditional methods. It provides 

the advantages of a measurement process for 100% inspection and the flexibility for 

measuring the part under test without fixing it in a precise position. In contrast to the 

stylus-based methods that trace the surface roughness in one dimension, machine vision can 
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generate many more readings of a two dimensional surface in a given time and, therefore, 

makes the estimation method for roughness measurement more reliable. 

 

Over the years, the non-contact optical methods have attracted researchers’ attention 

for the assessment of surface roughness. Most of the methods are based on statistical 

measures of gray-level images in the spatial domain. Al-Kindi et al. (1992) examined the use 

of a digital image system in the assessment of surface quality. The measure of surface 

roughness is based on spacing between gray-level peaks and number of gray-level peaks 

per unit length of a scanned line in the gray-level image. This 1-D based technique does not 

fully utilize the 2-D information of the surface image, and is sensitive to lighting and noise. 

Luk and Huynh (1987) utilized the gray-level histogram (distribution) of the surface image to 

characterize surface roughness. They found the ratio of the spread and the mean value of the 

distribution is a nonlinear, increasing function of average surface roughness Ra  (center line 

average). Since their method is based soley on gray-level histogram, it is sensitive to the 

uniformity and degree of illumination present. In addition, no information regarding the spatial 

distribution of periodic features can be obtained from the gray-level histogram. Hoy and Yu 

(1991) adopted the algorithm of Luk and Huynh to characterize surface quality of turned 

and milled specimens. In their experiments, they found one exception that the ratio of the 

spread and the mean of the gray-level distribution is not a monotonically increasing function 

of surface roughness and, therefore, the value of the ratio may lead to incorrect 

measurement. Hoy and Yu also addressed the possibility of using the Fourier transform (FT) 

to characterize surface roughness in the frequency domain. However, only simple visual 

judgement of surface images in the frequency plane is discussed. No quantitative description 
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of FT features for the measurement of surface roughness is proposed. Other non-contact 

optical proximity methods, which include lasers and fiber optics (Scott and Baul 1980) and 

complicated Moire interferometric technigue (Chen et al. 1994) available for surface 

roughness measurement are hardware limited and require high eguipment cost. 

 

In this study, we use machine vision to estimate the surface roughness of machined 

parts generated by shaping and milling processes. The quantitative measures of surface 

roughness are extracted in the spatial frequency domain using the two-dimensional Fourier 

transform. The Fourier transform approach has the desirable properties of noise-immunity, 

orientational dependency, and enhancement of periodic features. A FT pattern feature is 

proposed to distinguish between shaped and milled surfaces in a given range of surface 

roughness. A set of five roughness features extracted from the frequence plane is presented 

as the measures of surface roughness for both shaped and milled surfaces.  

 

    Artificial neural networks (ANNs ), which take roughness features as the input, are 

applied to classify the surface of interest among a set of standard surfaces of known 

roughness values. Two neural network models are developed. The first network is for 

workpieces in a fixed orientation, which minimizes the deviation of roughness measures. 

Only the roughness features are used as the input to the network. The second network is for 

workpieces in arbitrary orientations, which gives maximum flexibility for inspection tasks. 

The roughness features along with the surface direction derived from the FT frequency plane 

are used as the input to the network. By using these tow ANNs  with roughness features 

extracted from the frequency plane, accurate and flexible automated visual measurement of 
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surface roughness can be achieved. 

 

    This paper is organized as follows: Section 2 discusses the extraction of surface 

roughness features in the spatial frequency domain. Section 3 presents the neural network 

models for estimating surface roughness. A feature selection procedure that chooses the best 

subset of features as the input to the network is also addressed in this section. Section 4 

presents the experimental results for two sets of shaped and milled specimens with various 

roughness standards. The paper is conclude in Section 5.   

 

2. EXTRACTION OF ROUGHNESS FEATURES 

 

    The first and most important task in roughness measurement with machine vision is to 

extract roughness features of surfaces. Typical noise processes tend to dramatically alter 

local spatial variation of intensity while having relatively uniform representation in spatial 

frequency (Liu and Jernigan 1990). Frequence domain features should be less sensitive to 

noise than spatial domain features. Therefore, in this study we choose to extract features of 

surface roughness in the spatial frequency domain using the 2-D Fourier transform. The FT 

is particularly useful for surfaces in noisy conditions due to tool wear marks, dust and dirt. 

The FT characterizes the surface image in terms of frequency components. The 

periodically-occurring features such as feedmarks and toolmarks present in the gray-level 

image can be easily observed from the magnitude of the frequency components. 

Furthermore, the FT is rotation- dependent, i.e., rotating the original image by an angle will 

rotate its corresponding frequency plane by the same angle. The lay direction of a surface 
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can be preserved accordingly. 

   

Let f x y( , )  be the gray level of a pixel at ( , )x y  in the original image of size 

N N× pixels centered on the origin. The discrete 2-D Fourier transform of f x y( , )  is 

given by  
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1− .  The discrete 2-D Fourier transform can 

be expressed in the separatable forms with 1-D Fourier transforms, and obtained efficiently 

using the fast Fourier transform algorithm (Gonzalez and Woods 1992). 

 

    The Fourier transform is generally complex; that is 

F(u,v) = R(u,v)+ j I(u, v)⋅  

where R(u,v)  and I(u,v)  are the real and imaginary components of  F(u,v) , respectively.  

The power spectrum P(u,v)of f x y( , )  is defined by 

P u v F u v R u v I u v( , ) ( , ) ( , ) ( , )= = +2 2 2  

In this study we have focused on roughness measurements of shaped and milled surfaces. 

Figures 1(a), 1(b) and 1(c) show the surface images of three shaped specimens with the 

roughness values of Rmax  6.3, 25 and 100 µm , respectively, where Rmax  is the distance 

between the highest peak and the lowest valley in the trace of the surface. Figures 1(d), 1(e) 

and 1(f) visually show the power spectra P u v( , )  of the surface images as an intensity 

function, where brightness is proportional to the magnitude of P u v( , ) . Figures 1(g),1(h) 
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and 1(i) present the plots of the power spectrum functions in 3-D perspective. It can be 

seen from Figures 1(d) through 1(i) that the origin in the center of the power spectrum map 

has the largest magnitude of P u v( , ) . Note that a series of approximately equally-spaced 

spots of decreasing magnitude of power spectrum are deployed along the horizontal line on 

both sides of the origin. The distance between adjacent bright spots represents the 

frequency of the periodic feedmarks in the surface image. The finer the surface roughness, 

the larger the distance(i.e., the higher the frequency) is resulted. We can also observe that 

the line passing through these equally-spaced bright spots in the power spectrum map is 

perpendicular to the direction of lay in the original surface image. 

 

    A similar observation can also be made for the milled specimens with three roughness 

values of Rmax  1.6, 12.5 and 50 µm  as shown in Figures 2(a), 2(b) and 2(c), respectively. 

By comparing Figures 1(a)-1(c) and Figures 2(a)-2(c), we found that the surface patterns of 

the shaped specimens are more regular and present less noise than those of the milled 

specimens. Therefore, multiple diffuse points around the origin in the power spectrum map 

(Figures 2(d)-2(i)) are generated for milled specimens.  These multiple diffuse points 

correspond to nonperiodic features in the original image.   

 

    There may exist a large set of features that can be extracted from the surface image in 

the frequency domain. However, it is logical to select only such features that their 

quantitative values are a monotonic function (either increasing or decreasing) with respect to 

roughness values. This ensures the easy construction of robust estimators for roughness 

measurement. A set of 28 features (Liu and Jernigan 1990) derived in the frequency domain, 
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which were used for classifying natural textures rather than surface roughness in the field of 

texture analysis, have been investigated in our preliminary experiments. It has been found 

that most of the 28 features are not monotonic functions of surface roughness. In this study, 

we propose five roughness features which are generally (or, approximately) monotonic 

functions of surface roughness Rmax . The quantitative definitions of these features are given 

below. Let 

p u v
P u v

P u v
u v

( , )
( , )

( , )
( , ) ( , )

=

≠
∑

0 0

 

be the normalized power spectrum, which has the characteristics of a probability 

distribution. 

1. Major peak frequencyF1  

F u v1 1
2

1
2 1

2= +( )  

where ( , )u v1 1 are the frequency coordinates of the maximum peak of the power spectrum, 

i.e., 

p u v p u v u v( , ) max{ ( , ), ( , ) ( , )}1 1 0 0= ∀ ≠  

Feature F1  is the distance of the major peak ( , )u v1 1 from the origin ( , )0 0  in the 

frequency plane. The plots of F1  values against roughness values Rmax  for both shaped 

specimens with  Rmax  values of 6.3, 12.5, 25, 50 and 100 µm , and milled specimens with 

Rmax  values of 1.6, 3.2, 6.3, 12.5, 25 and 50 µm  are shown in Figure 3. It demonstrates 

that the value of F1  decreases as the surface roughness Rmax  increases for both shaped 

and milled surfaces. 
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2. Principal component magnitude squared F2  

F2 = λ1  

where λ1  is the maximum eigenvalue of the covariance matrix of p u v( , ) . The covariance 

matrix M is given by 

M
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Feature F2  indicates the variance of components along the principal axis in the frequency 

plane. From Figure 4, it can be seen that the value of F2  decreases as the surface 

roughness Rmax  increases.  

3. Average power spectrum F3  

F P u v S
u v

3
0 0

=
≠
∑ ( , ) /

( , ) ( , )

 

where S N= −2 1  for a surface image of size N N× .  Feature 3 is an increasing 

function with respect to the surface roughness Rmax  as seen in figure 5.  

 

4. Central power spectrum percentage F4  

F
P

P u v
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Based on eq.(1), the frequency component at the origin (the center) of the frequency plane 



 9

has the maximum power spectrum. It can be seen from Figure 6 that the value of F4  

decreases as the surface roughness Rmax  increases for both shaped and milled specimens. 

 

5. Ratio of major axis to minor axis F5  

( )F5

1
2= λ λ1 2/  

where λ1  and λ2  are the maximum and minimum eigenvalues of the covariance matrix of 

p u v( , ) . Figure 7 shows the plots of feature F5  against the roughness Rmax  for both 

shaped and milled specimens. Although feature F5  is not a strictly monotonic function of 

roughness Rmax , it generally agrees with the monotonic tendency when the value of Rmax  

gets larger. 

 

    As mentioned previously, the directionality of the frequency components in the 

frequency plane indicates the lay direction of a surface in the spatial plane. This phenomenon 

can be further observed in Figure 8, where a shaped specimen with roughness Rmax  of 

25 µm  is rotated by an angle 30 o . Note that rotating the original surface image by an angle 

30 o  (Figure 8(a) versus Figure 1(b)) rotates its corresponding frequency plane by the same 

angle. The eigenvector associated with eigenvalue λ1  for the covariance matrix of p u v( , )  

indicates the direction of the principal axis in the frequency plane, and can be basically used 

to estimate the direction of a surface. However, a preliminary experiment has shown that the 

estimation error of   the eigenvector approach is within 5 o . To further improve the 

estimation accuracy of direction, we purpose a now direction measure θ  in this study. 

From Figures 1(d)-1(f), 2(d)-2(f) and 8(b), we found that the line passing through a series 
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of equally-spaced bright spots also passes the origin ( , )0 0  in the frequency plane. Since 

the distribution of frequency components is symmetric to the central component at ( , )0 0 , 

we can estimate the slope angle θ  of the best fitting line, in the least sguares sense, by 

θ = tan
( )
( )

− 







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S u
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n  is the total number of sample points used for line fitting, which corresponds to the n  

largest peaks in p u v( , ) , i.e., 

p u v p u vi i i i( , ) ( , )> + +1 1 , p u vi i( , )  ∈ { ( , )},p u v  for  i n= 1 2, ,...  

w u vi i( , )  gives the weight for sample point ( , )u vi i  according to its magnitude of power 

spectrum. The measured direction is perpendicular to the lay direction of a surface. In this 

study, a sample size of n = 20  is found to be sufficient to estimate the orientation for both 

shaped and milled specimens. A preliminary experiment has shown that the estimation 

accuracy of the direction θ  is within 1o . 

 

3. NEURAL NETWOROKS FOR ROUGHNESS MEASUREMENT 

 

    Once the roughness features are extracted, the second measurement task is to develop 

the estimation models based on the values of the selected roughness features.  From 
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Figures 3 through 7, we found that the aforementioned features F1  through F5  are 

nonlinear functions with respect to the roughness value Rmax . Furthermore, the values of 

these roughness features are affected to some extent by the specimen's orientation present to 

the camera. The nonlinear relationships among surface orientation, roughness features 

F1 - F5  and the corresponding roughness value Rmax  are an extremely difficult, if not 

impossible, task to analyze. In this study, we use artificial neural network ( ANN ) 

techniques to develop the estimation models for roughness measurement. The advantage of 

an ANN  in measurement applications is that it provides a model-free approach for 

accurate estimation without knowing the exact nonlinear function between the input features 

and the output targets. Two neural networks are developed, one for measuring the surface 

roughness of machined parts in a fixed orientation, and the other one for measuring the 

surface roughness of machined parts in arbitrary orientations. Both neural networks used in 

this work are multilayer feedforward neural networks with a back-propagation learning rule 

(Pao 1989). 

 

An ANN is specified by the topology of the network, the characteristics of the nodes 

and the processing algorithm. The proposed back-propagation neural networks are 

composed of an input layer, a single hidden layer, and an output layer. Each layer is fully 

connected to the succeeding layer. The outputs of nodes in one layer are transmitted to 

nodes in another layer through links. The link between nodes indicates flow of information 

during recall. During learning, information is also propagated back through the network and 

used to update connection weights between nodes.  
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    Let o j  be the output of the jth  node in the previous layer and wij  the connection 

weight between the ith  node in one layer and the jth  node in the previous layer. The 

total input to the ith  node of a layer is 

net w oi ij j
j

= ⋅∑  

A hyperbolic tangent activation function is used here to determine the output of the node i , 

which is give by  

o f net
e e
e ei i

net net

net net

i i

i i
= =

−
+

−

−( )  

In the learning phase for such a network, we present the training pattern T I p= { } , where 

I p  is the pth  component of the vector T  entered into the pth  node in the input layer, 

and ask the network to adjust the weights in all the connecting links such that the desired 

outputs {D }k  are obtained at the output nodes. Let {O }k  be the evaluated outputs of the 

network in its current state. For a training pattern the squared error of the system can be 

written as  

E D Ok k
k

= −∑1
2

2( )  

The generalized delta-rule learning algorithm (Rumelhart et al.1986) is applied to adjust 

the weights such that the error E  is a minimum. A detailed derivation of the learning 

procedure can be found in (Pao 1989) 

 

    The first back-propagation neural network used for measuring the surface roughness of 

machined parts in a fixed orientation, denoted by ANN1 , is a three-layer network with one 

through five nodes in the input layer, depending on the number of roughness features 
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selected, 10 nodes in the hidden layer, and one single node in the output layer. With 

machined parts placed in a fixed orientation, the values of roughness features can be reliably 

extracted with minimum deviation. The input vector I1  to the network is a subset of 

roughness features { , , , , }F F F F F1 2 3 4 5 . The topology of the network ANN1  is illustrated 

in Figure 9. In the learning phase, the desired value of the node in the output layer is the 

actual roughness Rmax
*  known a priori. A pair of (Input,Output)=  (I ,R )1 max

*  forms the 

training sample for the network ANN1 . In the recall phase of the network, the estimated 

roughness Rmax  is simply given by the value of the node in the output layer. 

 

    The second back-propagation neural network, denoted by ANN 2 , is used for 

measuring the surface roughness of machined parts in arbitrary orientations. With machined 

parts in arbitrary orientations, the measurement task can be carried out flexibly without the 

requirements of fixtures and human intervention for alignment.  The topology of the 

network ANN 2  as shown in Figure 10 is identical to that of the network ANN1  except 

that ANN 2  uses the direction feature θ  as the additional input. The input vector I2  to 

the network ANN 2  is, therefore, contains the orientation feature θ  and a subset of 

roughness features { , , , , }F F F F F1 2 3 4 5 . θ  is used to compensate for the effect of surface 

orientation on the measurement error of surface roughness. 

 

    To determine an optimal subset of the five roughness features without exhaustively 

evaluating all possible combinations of features for both neural networks ANN1  and 

ANN 2 , we used the method of sequential forward selection (Nadler and Smith 1993). The 
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successive addition feature selection scheme proceeds as follows: 

1. Select the single best feature. 

2. Try all remaining features with the subset already chosen in the previous stage, one 

at a time, and add the one that gives the best improvement. 

3. Continue the procedure above until all features are added. 

 

    In this work, the performance of a neural network with a given subset of roughness 

features (input vector) is measured by the root mean square ( RMS ) of roughness errors for 

a set of test data, which is defined by 

RMS R R N
j j

j

= −












∑( ) /max

*
~

max

/

2

1 2

 

where R
jmax

*  is the actual roughness value, and R j

~

max  is the estimated roughness value 

from the neural network for the jth  sample in the test set. N  is the total number of 

samples in the test set. 

 

4. EXPERIMENTAL RESULTS 

 

    In this section we present experimental results for evaluating the validity of the 

proposed roughness features and the performance of the neural networks for roughness 

measurement. In our implementations, all algorithms are programmed in the C language 

and executed on a personal computer with a Pentium 100MHz processor. The grabbed 

image is of size 512x480 pixels with 256 gray levels. Standard comparison shaped 
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specimens (JIS B 0659) containing five roughness values of Rmax  6.3, 12.5, 25, 50 and 

100 µm , and standard comparison milled specimens containing six roughness values of 

Rmax  1.6, 3.2, 6.3, 12.5, 25 and 50 µm  are used in the experiments to test the validity of 

the proposed algorithms.  

 

    Illumination of the specimens is accomplished by a regular fluorescent light source 

which is situated at an angle of approximately 10 degrees incidence with respect to the 

normal of the specimen surface. The camera is also set up at an angle of approximately 10 

degrees with respect to the normal of the specimen surface, and at a distance of 

approximately 30 cm from the specimen surface. This setting enhances the characteristics of 

surface patterns, and gives the best quality of surface images. Figure 11 shows the setup of 

the machine vision system used in the experiments. Throughout the experiments, the camera 

parameters are fixed for both shaped and milled specimens with the roughness range 

between 1.6 µm  and 100 µm . 

 

    For network ANN1  that measures surface roughness of parts in a fixed orientation, 

we allow the specimens to be rotated with minor angles so that precise alignment can be 

eliminated. Each specimen of a given Rmax  value was rotated between − 4o  and 4 o  in 

approximately 1o  increments; two images of 512 480×  pixels were grabbed in each 

orientation. For each original image of 512 480×  pixels we arbitraily selected three 

distinct subimages of 256 256×  pixels as the training samples for network ANN1 .  The 

subimage of size 256 256×  pixels corresponds to approximately 4.5 4.5×  mm of a 

specimen surface. The sampling procedure above was also repeated, but with only one 
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subimage of 256 256×  pixels in each grabbed image, to generate the required test 

samples. 

 

    For network ANN 2  that measures surface foughness of parts in arbitrary orientations, 

we allow the specimens to be rotated by large angles between − 40o  and 40 o  in 

approximately 5 o  increments. The sampling procedures to generate the required training 

set and test set for network ANN 2  are the same as those for network ANN1 , except that 

ANN 2  involves 17 distinct orientations and ANN1  involves only 9 orientations for each 

specimen of a given roughness Rmax . Note that none of the test samples is a redundancy of 

the training samples. Table 1 summarizes the number of training samples and the number of 

test samples used in each network for each machining. 

 

    Before we evaluate the performance of the neural networks for roughness 

measurement, there is an interesting feature that deserves mention here. Let F( , )0 0  be 

the Fourier spectrum of the origin in the frequency plane, where  

F P( , ) ( , )0 0 0 0=  

It has been observed that the value of F( , )0 0  is distributed between 25000 and 

37500 for 780 training samples of shaped specimens regardless of specimen orientations, 

and between 40000 and 51000 for 936 training samples of milled specimens. Figure 12 

shows the histogram of the Fourier spectrum F( , )0 0  based on the 1716 training samples. 

Two well-separated distributions are resulted in the histogram, each representing a class of 

machining. By selecting the threshold at 39000, the feature of F( , )0 0  can be used to 
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distinguish between shaped specimens and milled specimens. A 100% recognition rate has 

been achieved for the 260 test samples of shaped specimens and 312 test samples of milled 

specimens. Since the observation above is based on the shaped specimens with roughness 

range between 6.3 µm  and 100 µm  and the milled specimens with roughness range 

between 1.6 µm  and 50 µm , the distribution of the Fourier spectrum F( , )0 0  for 

roughness values outside the specified roughness ranges may need further investigation. 

 

    The performances of networks ANN1 and ANN 2  for shaped and milled specimens 

are discussed separately in the following subsections. 

 

4.1 Experiments on Shaped Specimens 

 

    The sequential feature selection procedure described in section 3 is applied to 

determine the best combination of roughness features F1  through F5  in terms of minimum 

RMS  roughness error. The results of feature selection for networks ANN1  (fixed 

orientation) and ANN 2 (arbitrary orientation) are reported in Table 2 and Table 3, 

respectively. Each entry in Table 2 and Table 3 is the RMS  roughness error in µm  of 90 

and 170 test samples, respectively. The first row in Table 2 shows the RMS  errors when 

only a single roughness feature is used as the input to the network ANN1 . It indicates that 

major peak frequency F1  yields the minimum RMS  error of 0.0098 µm .  The second 

row in Table 2 shows the results of two features that contain feature F1  selected in the 

previous stage and any one of the four remaining features. For two features selected, the 
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combination of features F1  and F5  yields the minimum RMS  error of 0.0232 µm . The 

remaining entries in rows 3, 4 and 5 of Table 2 are interpreted in a similar way as above. 

From Table 2, it can be seen that adding more number of roughness features to the network 

may not improve the RMS  error. Major peak frequency F1  seems to dominate all other 

roughness features. This may be due to the fact that feature F1  is a robust indication of 

feedmark spacing, and feed distance has been shown (Amstead et al. 1987) to be highly 

correlated with the roughness height.  Therefore, for shaped specimens in a fixed 

orientation, major peak frequency F1  is the best feature for measuring the surface 

roughness. 

 

    Table 4 presents the mean Rmax  values, maximum Rmax  values, minimum 

Rmax values, and variances of Rmax  values for the test samples of shaped specimens using 

the network ANN1  with feature F1  as the input. The results reveal that the measured 

mean Rmax  values are almost identical to the standards. Recall that the specimens under 

test are allowed to be rotated within ± 4o . Network ANN1  with input feature F1  has 

shown its robustness and stability for roughness measurement with Rmax  variances less 

than 0.001 µm . 

 

    For shaped specimens in arbitrary orientations, Table 3 shows that major peak 

frequency F1  also outperforms all other roughness features when only a single feature is 

used as the input to the network ANN 2 . The overall minimum RMS  error of 1.3177 

µm  is generated by the combination of three features F  , F  1 5  and F4 . The improvement 
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in the RMS  error with features F  , F  1 5  and F4  is not very significant, compared to the 

RMS  error of 1.9474 µm  with feature F1  alone. Table 5 shows the mean Rmax  values, 

maximum Rmax  values, minimum Rmax  values and variances of Rmax  values for the test 

samples of shaped specimens using the network ANN 2  with direction feature θ  and 

roughness features F  , F  1 5  and F4  as the input. Even though the specimens under test 

are rotated arbitrarily within large angle range of ± 40o , the measured mean Rmax  values 

are also almost identical to the standards. As expected, the variance of Rmax  values 

generated by network ANN 2  is larger than that generated by network ANN1  owing to 

arbitrary orientations of specimens present to the camera. The resulting variances of Rmax  

values are generally less than 0.6mm for various roughness standards.  

 

4.2 Experiments on Milled Specimens 

 

    Table 6 summarizes the results of the sequential feature selection procedure for milled 

specimens in fixed orientation (± 4o ). The first row in Table 6 also shows that major peak 

frequency F1  yields the minimum RMS  error of 0.0093 µm  when only a single 

roughness feature is used as the input to the network ANN1 . From Table 6, the overall 

minimum is given by the combination of two features F1  and F5  with the RMS  error of 

0.0087 µm , which is not statistically different from 0.0093 µm  given by single feature F1 . 

Table 7 presents the mean and deviation of Rmax  values for the test samples of milled 

specimens using the network ANN1  with feature F1  as the input. The results also show 

that the measured mean Rmax  values are almost identical to the standards, and the 
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variances of Rmax  values are smaller than 0.001 µm . Therefore, major peak frequency F1  

is a very effective and reliable feature for measuring the roughness of both shaped and milled 

surfaces in a fixed orientation. 

 

    Table 8 reports the results of the sequential feature selection procedure for milled 

specimens in arbitrary orientations ( ± 40o ). Given that only one roughness feature is used as 

the input to the network ANN 2 , the feature of average power spectrum F3  yields the 

minimum RMS  error of 1.2863 µm . The overall minimum RMS  error of 0.8311 µm  is 

given by the combination of three features F3 , F1  and F5 . Table 9 presents the mean and 

deviation of Rmax values for the test samples of milled specimens using the network ANN 2  

with the input vector containing the direction feature θ  and the roughness features F3 , 

F1  and F5 . The resulting mean Rmax values are also very close to the standards. As 

expected, the variance of Rmax  values generated by network ANN 2  is significantly larger 

than that generated by network ANN1  due to arbitrary orientations of specimens present 

to the camera. For workpieces in arbitrary orientations, the Rmax variances of milled 

specimens are larger than those of shaped specimens. This is due to the fact that the surface 

patterns of shaped specimens are more regular and have less noisy elements, compared with 

the surface patterns of milled specimens, as seen in Figures 1 and 2. 

 

    Based on the experimental results above, the proposed machine vision approach can 

be applied effectively and reliably to measure the surface roughness of interest among a set 

of standard surfaces of known roughness values. 
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5. CONCLUSION 

 

    In this paper, we have proposed a non-contact machine vision system for measuring 

roughness of shaped and milled surfaces. It provides a reliable assessment of surface 

roughness over a given 2-D area rather than a single 1-D trace. Since shaped and milled 

surfaces are directional patterns with the appearance of periodic, parallel feedmarks, the 

roughness features are extracted in the spatial frequency domain based on the 2-D Fourier 

transform. 

 

    The FT approach characterizes the surface image in terms of frequency components. 

The magnitude of frequency components enhances the periodically- occurring features 

present in the surface image, and the directionality of frequency components preserves the 

lay direction of a surface. Five roughness features have been proposed in this work. Among 

these features, major peak frequencyF1 , which represents the frequency (or, inversely, the 

wavelength) of the feedmarks in the image, generally outperforms other roughness features 

for roughness measurement. A direction feature θ  has also been derived for measuring the 

direction of the surface present to the camera. 

 

Two neural networks ANN1  and ANN 2  are developed. Network ANN1  is used 

for machined parts placed in a fixed orientation, and network ANN 2  is for machined parts 

placed in random orientations. As expected, roughness values measured by network 

ANN1  are very accurate and reliable, even when the specimens under test are rotated 

within ±4o . No exact alignment for test parts is required to apply network ANN1 . 
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Roughness values measured by network ANN 2  are also accurate but with larger deviation, 

compared with thosed measured by network ANN1 . Since network ANN 2  allows parts 

of interest to be present to the camera in arbitrary orientations, it is flexible for measurement 

applications without the requirements of human intervention and alignment devices.  

 

    Based on the experimental results described previously, the recommended roughness 

features for shaped and milled surfaces in fixed and arbitrary orientations are summarized in 

Table 10. 

 

The computational time of the Fourier transform with size 256 256×  is 

approximately 2 seconds on a Pentium 100MHz personal computer. It compares favorably 

with the traditional stylus-based methods. We believe the computational time can be further 

reduced with a high-end personal computer or workstation, or with hardware 

implementation of the Fourier transform for on-line, real time measurement of surface 

roughness. 
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   (a) R mmax .= 6 3µ    (b) R mmax = 25µ   

   
 

               
   (d)   (e) 

          
   (g)                                      (h) 

 

Figure 1. (a), (b), (c) Surface images of shaped specimens with roughness Rmax values of 6.3, 

25 and 100 µm , respectively; (d), (e), (f) the corresponding power spectra 

displayed as an intensity function; and (g), (h), (i) the corresponding power 

spectra in 3-D perspective. 
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(c) R mmax = 100µ   

 
 

 
(f)   

 

 
(i) 

 
Figure 1. (Continued) 
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  (a) R mmax .= 1 6µ  (b) R mmax .= 12 5µ   

 

               
(d) (e) 

 

          
 (g)                                       (h) 

 

Figure 2. (a), (b), (c) Surface images of milled specimens with roughness Rmax values of 1.6, 

12.5, and 50 µm , respectively; (d), (e), (f) the corresponding power spectra 

displayed as an intensity; and (g), (h), (i) the corresponding power spectra in 3-D 

perspective. 
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(c) R mmax = 50µ  

 
 

 
(f) 

 

 
(i) 

 
 

Figure 2. (Continued) 
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Figure 3. The relationship between feature F1  and roughness Rmax . 
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Figure 4. The relationship between feature F2  and roughness Rmax . 
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Figure 5. The relationship between feature F3  and roughness Rmax . 
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Figure 6. The relationship between feature F4  and roughness Rmax . 
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Figure 7. The relationship between feature F5  and roughness Rmax . 
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(a) 

 
 

 
(b) 

 
 
Figure 8. (a) The surface image of a shaped specimen with Rmax  25 µm , which is rotated 

by an angle 30 o  with respect to the original image in Figure 1(b); (b) the 
corresponding power spectrum displayed as an intensity function. Note that the 
frequency direction is perpendicular to the lay direction. 
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Figure 9. The system architecture of ANN1 for workpieces in a fixed orientation. 
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Figure 10. The system architecture of ANN2 for workpieces in arbitrary orientations. 
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Figure 11. The machine vision setup used in the experiments. 
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Figure 12. Distribution of the Fourier spectrum F( , )0 0  for shaped and milled  

samples. 
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Table 1. Numbers of training samples and numbers of test samples used in the  
       experiments. 
 

Network 
 

Machining 

Network ANN1 

(Fixed orientation) 

Network ANN2 

(Arbitrary orientation) 

Training samples 270 510 
Shaping 

Test samples 90 170 

Training samples 324 612 
Milling 

Test samples 108 204 

 
 

Table 2. The results of feature selection for network ANN1 (shaped           
           specimens in a fixed orientation). 
 

Best Feature

Selection 
procedure 

F1  F2  F3  F4  F5  features 
selected 

1 feature 0.0098 3.2241 5.9915 5.6449 25.7127 F1
* 

2 features  0.1984 0.2303 0.2404 0.0232 F F1 5,  

   3 features  0.1392 0.2501 0.2152  F F F1 5 2, ,  

4 features   0.2459 0.2397  F F F F1 5 2 4, , ,  

5 features   0.1864   F F F F F1 5 2 4 3, , , ,  
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Table 3. The results of feature selection for network ANN2 (shaped       
           specimens in arbitrary orientations). 
 

Best Feature

Selection 
procedure 

F1  F2  F3  F4  F5  features 
selected 

1 feature 1.9474 2.6683 9.8628 9.4411 21.7451 F1  

2 features  1.7561 1.6038 1.6960 1.5507 F F1 5,  

   3 features  1.7943 1.3541 1.3177  F F F1 5 4, , * 

4 features  1.4185 1.5642   F F F F1 5 4 2, , ,  

5 features   1.9312   F F F F F1 5 4 2 3, , , ,  

 
 

Table 4. Mean and deviation of measured Rmax  values of shaped specimens for the 

       network ANN1 with a single roughness feature F1 . 
 

Rmax
 ( µm ) standards 

Shaped specimens 
6.3s 12.5s 25s 50s 100s 

Mean 6.295 12.503 25.005 50.002 100.000 

Maximum 6.297 12.515 25.029 50.002 100.000 

Minimum 6.290 12.487 24.985 50.002 100.000 
F1  

Variance 0.000 0.000 0.000 0.000 0.000 

 
 

Table 5. Mean and deviation of measured Rmax  values of shaped specimens for the       

network ANN2 with three roughness features F1 , F5  and F4 . 
 

Rmax
  ( µm )  standards 

Shapes specimens 
6.3s 12.5s 25s 50s 100s 

Mean 6.306 12.519 25.137 50.607 100.220 

Maximum 6.802 12.817 26.281 52.607 100.766 

Minimum 6.043 12.293 23.613 49.419 99.044 

 
F F F1 5 4, ,  

 
 Variance 0.028 0.014 0.511 0.607 0.155 
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Table 6. The result of feature selection for network ANN1 (milled specimens in a fixed 
orientation). 

 

Feature

Selection 
procedure 

F1  F2  F3  F4  F5  

Best 

features 
selected 

1 feature 0.0093 6.3541 1.5551 2.4378 14.2074 F1  

2 features  0.1142 0.0792 0.1191 0.0087 F F1 5, * 

   3 features  0.1179 0.1326 0.0954  F F F1 5 4, ,  

4 features  0.2338 0.3201   F F F F1 5 4 2, , ,  

5 features   0.1976   F F F F F1 5 4 2 3, , , ,  

 
 

Table 7. Mean and deviation of measured Rmax  values of milled specimens for the       

network ANN1 with a single roughness features F1 . 
 

Rmax
  ( µm )  standards 

Milled specimens 
1.6s 3.2s 6.3s 12.5s 25s 50s 

Mean 1.600 3.203 6.300 12.500 25.000 50.000 

Maximum 1.610 3.208 6.300 12.500 25.000 50.000 

Minimum 1.573 3.168 6.300 12.500 25.000 50.000 
F1  

Variance 0.000 0.000 0.000 0.000 0.000 0.000 

 
 

Table 8. The result of feature selection for network ANN2 (milled specimens in arbitrary 
orientation). 

 

Best Feature

Selection 
procedure 

F1  F2  F3  F4  F5  features 
selected 

1 feature    1.8681 4.1019 1.2863 3.5123 15.1313 F3  

2 features 1.0492 1.1539  1.0748 1.1421 F F3 1,   

   3 features  0.8866  0.8561 0.8311 F F3 1 5, , F * 

4 features  0.9250  0.8386  F3 1 5 4, , , F  F  F  

5 features  0.8748    F3 1 5 4 2, , , , F  F  F  F  
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Table 9. Mean and deviation of measured Rmax  values of milled specimens for the       
network ANN2 with three roughness features F3 , F1  and F5 . 

 

Rmax
  ( µm )  standards 

Milled specimens 
1.6s 3.2s 6.3s 12.5s 25s 50s 

Mean 1.765 3.085 6.717 12.523 24.874 49.878 

Maximum 2.283 3.656 7.477 14.393 26.751 50.630 

Minimum 1.401 2.635 5.648 9.496 20.174 48.967 
F F F3 1 5, ,  

Variance 0.053 0.068 0.222 1.259 0.856 0.152 

 
 

Table 10. The recommended roughness features for measuring roughness of shaped and 
milled surfaces. 

 
 

Machining Orientation 
Neural 

network 
Recommended 
input features 

Comments 

Fixed ANN1 F1   •Accurate and reliable measurements 

•Limited rotated angles of surface 

Shaping 

Arbitrary ANN2 θ , , ,F F F1 5 4  
•Good measurement with minor 

deviation 

•Flexible for measurement tasks 

Fixed ANN1 F1  •Accurate and reliable measurements 

•Limited rotated angles of surface 

Milling 

Arbitrary ANN2 θ , , ,F F F3 1 5  
•Good measurement with minor 

deviation 

•Flexible for measurement tasks 

 
 

 


