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1. INTRODUCTION 

 

Visual inspection makes up an important part of quality control in 

manufacturing. The manual activity of inspection could be subjective and highly 

dependent on the experience of human inspectors. In this study, we use machine 

vision for automatic surface inspection. 

 

In automatic surface inspection, one has to solve the problem of detecting small 

surface defects which locally break the homogeneity of a texture pattern. Textures are 

generally classified into two major types, structural and statistical [1]. Structural 

textures are those that are composed of repetitions of some basic texture primitive, 

such as directional lines, with a deterministic rule of displacement. This type of 

texture arises in machined surfaces. Statistical textures cannot be described by 

primitives and displacement rules. The spatial distribution of gray levels in such 

textured image is rather stochastic. Sandpaper and leather, for instance, fall in this 

category. 

 

The inspection task in this paper is classified as qualitative inspection [2] which 

involves detecting novel but obviously faulty items such as scratches, cracks, stains, 
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and other ill-defined faults. Many of these unanticipated defects are small in size, and 

cannot be described by explicit measures, making automatic defect detection difficult. 

 

Most of the defect detection systems are focused on nontextured surfaces such as 

glass panel [3], sheet steel [4], aluminum strips [5] and web materials [6], using 

simple thresholding or edge detection techniques. Defects in these images can be 

easily detected because commonly used measures usually have very distinct values. 

Automatic visual inspection techniques for textured surfaces generally compute a set 

of textural features in a sliding window, and search for significant local deviations in 

the feature values. The most difficult task of this approach is to extract adequate 

textural features which most completely embody information of the texture in the 

image. A set of features that is an optimal representation of a specific texture could be 

completely useless for other texture patterns. There is no straightforward manner to 

judge the appropriate features to use. Therefore, the selection of an adequate feature 

set for a new texture in the training process could be very time-consuming and 

requires the help of human knowledge. Furthermore, textures which are characterized 

by a vector of multiple features result in high dimensionality. This call for 

sophisticated classifiers such as Bayes [7], maximum likelihood [8], and neural 

networks [9] to discriminate texture classes. 

 

A wide spectrum of methods has been proposed to extract textural features either 

directly from the spatial domain or from the spatial-frequency domain. In the spatial 

domain, simple textural features are the first-order statistics [10] such as mean, 

variance, skewness and kurtosis from the gray-level histogram of an image. The more 

reliable and commonly used features are the second-order statistics derived from 

spatial gray-level co-occurrence matrices [11]. They have been applied to wood 
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inspection [12], carpet wear assessment [13] and roughness measurement of machined 

surfaces [10]. 

 

Early work [14] suggested that it may be possible to find better textural features, 

which are less sensitive to noise and intensity variation, in the spatial-frequency 

domain. Liu and Jernigan [15] reviewed a set of 28 textural features extracted in the 

spatial-frequency domain for texture analysis. The reported applications of 

spatial-frequency methods in texture analysis are mainly limited to texture 

classification and segmentation [16-18]. These methods generally consider textural 

feature sets derived from the Fourier domain images and use various classifiers such 

as distance measures, K-nearest neighbor rules, Bayes probability and neural 

networks to discriminate textures. 

 

The Fourier transform is a global approach that only characterizes the 

spatial-frequency distribution, but it does not consider the information in the spatial 

domain. In the last decade, the multichannel Gabor filters [19-22] are well recognized 

as a joint spatial/spatial-frequency representation for analyzing textured images with 

highly specific frequency and orientation characteristics. This technique extracts 

features by filtering the textured image with a set of Gabor filter banks characterized 

by the frequency, the orientation of the sinusoid, and the scale of the Gaussian 

function. 

 

The design of optimal Gabor filters is a very complicated task. Although many 

methods [23,24] have been developed for the design of filter banks, human 

intervention is generally required to assist in selecting the appropriate filter 

parameters for the textures under study. The main problem of Gabor schemes is that if 
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the center frequency of a selected Gabor filter does not match any of the important 

harmonics in the textured images, it produces only noisy information and degrades the 

discrimination performance [25]. Besides, Gabor filtering methods are very 

computationally expensive since the 2-D convolution must be carried out in a sliding 

window throughout the entire image. 

 

In the recent past, multiresolution decomposition schemes based on wavelet 

transforms have received considerable attention as alternatives for the extraction of 

textural features. The continuous 1-D wavelet transform was initially introduced by 

Grossmann and Morlet [26]. The 2-D wavelet transform was then defined by Lemarie 

and Meyer [27]. Its pyramid algorithm implementation was described by Mallat [28]. 

The multiresolution wavelet representation allows an image to be decomposed into a 

hierarchy of localized subimages at different spatial frequencies [29]. It divides the 

2-D frequency spectrum of an image into a lowpass (smooth) subimage, and a set of 

highpass (detail) subimages. Compared to the Fourier transform, the wavelet 

transform is a time-frequency function which describes the information of a signal in 

various time window and frequency bands. It is particular useful for the analysis of 

non-stationary or locally irregular signal. Since images in different scales and 

frequencies have inherently characteristics for the appearance of a texture, the 

multiresolution, multichannel modeling capability of wavelets is well-suited for 

texture analysis. 

 

The use of wavelets for texture analysis was pioneered by Mallat [28], who 

showed that a particular function of the wavelet orthonormal basis is equal to textural 

primitives with spatial orientation and narrow frequency tuning. Chang and Kuo [30] 

proposed a tree-structured wavelet transform for texture classification. They used an 
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energy criterion to select the subimages for further decomposition. A set of textural 

features is derived from the energy values of dominant channels, and distance 

measures are then employed to discriminate textures. Pichler et al. [25] compared two 

feature extraction methods based on the pyramid and tree-structured wavelet 

transforms for texture segmentation. Unser [31] studied texture classification and 

segmentation problems using wavelet frames. The present analysis methods used an 

overcomplete wavelet decomposition in which the output of the filter banks is not 

subsampled. It results in a texture description invariant with respect to translation of 

the input signal, and improves robustness of texture classification. Laine and Fan [32] 

used both energy and entropy metrics of each decomposed wavelet packet as textural 

features. The number of features is numerous. It involves 17 features of a standard 

wavelets and 341 features of a complete set of wavelet packets. A two-layer neural 

network uses those features as input for texture classification. Chen and Lee [29] 

considered the problem of texture segmentation in mammographic images. The image 

details at different resolutions is first examined using a standard wavelet transform. 

Contextual information from the wavelet decomposed images is then studied using a 

nonstationary Gaussian Markov random field. A fuzzy-C-means clustering method is 

used for segmentation based on the multiresolution and contextual information 

embedded in the neighborhood of each pixel. Chitre and Dhawan [33] presented an 

M-band wavelet technique for the classification of natural textures. Compared to the 

standard 2-band wavelets, M-band wavelets are more suitable for the analysis of 

high-frequency signals with relatively narrow bandwidth [34]. The M-band wavelet 

filters are designed using a genetic algorithm. Energy and entropy are computed on 

each decomposed subband, and the K-nearest neighbor classifier is then used to 

discriminate textures. 
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Van de Wouwer et al. [35] extended the multiresolution wavelet techniques to 

color texture classification. Textural features are given by wavelet correlation 

signatures which contain the energies of each color plane, together with the cross 

correlation between different color planes. Randen and Husoy [36] reviewed 

numerous filtering approaches to textural feature extraction. The most major filtering 

approaches included for comparison are Law mask, ring/wedge filters, eigenfilters, 

Gabor filter banks, discrete cosine transform, quadrature mirror filters, wavelet 

transforms, wavelet packets, wavelet frames, etc. The textural features are computed 

as the local energy of the filter responses. They found no single filtering approach that 

performs best for all test images. Lambert and Bock [37] proposed a feature extraction 

approach for texture defect detection. The textural features are derived from the 

coefficients of wavelet packet decomposition. Feature values are defined by the sum 

of absolute values of the coefficients in a predetermined neighborhood window with 

varying sizes in different resolution levels. Neural network and Bayes classifiers are 

used to evaluate the feature vector. Amet et al. [38] presented a defect detection 

algorithm based on the subband decomposition of images through wavelet filters and 

extraction of the statistical features from the subband image using co-occurrence 

matrix techniques. Detection of defects is performed by partitioning the textured 

image into non-overlapping subwindows and discriminating each subwindow using 

the Mahalanobis distance measure. 

 

The wavelet transform methods aforementioned for texture analysis are generally 

based on the extraction of textural features in different scales and subbands. An 

important problem in wavelet texture analysis is that the number of features tends to 

become huge. This calls for sophisticated classifiers working in high dimensional 

feature spaces. In addition, most techniques proposed for segmenting textured images 



 7 

involve the use of a neighborhood window with predetermined size to exploit local 

characteristics. Different textures may need different window sizes, and the repetitive 

computation in a sliding window throughout the entire image tends to slow the 

detection efficiency. 

 

In this paper, we propose a multiresolution approach based on an image 

restoration technique using the analysis and synthesis wavelet transforms for 

inspecting surface defects in both structural and statistical textures. The proposed 

method does not rely on textural features to detect local anomalies. It alleviates all 

limitations of feature extraction schemes aforementioned. 

 

The multiresolution wavelet technique transforms images into a representation in 

which both spatial and frequency information present. It is ideally suited for 

describing local changes in a homogeneous textured image. For one level of standard 

wavelet decomposition, we obtain one smooth subimage and three detail subimages 

which contain fine structures with horizontal, vertical and diagonal orientations. By 

properly selecting the smooth subimage or the combination of detail subimages in 

different resolution levels for backward wavelet transform, the reconstructed image 

will remove regular, repetitive texture patterns and enhance only local anomalies. A 

simple thresholding can then be used to discriminate between defective regions and 

homogeneous regions in the reconstructed image. This converts the difficult defect 

detection problem in complicated textured images into a simple thresholding problem 

in nontextured images. 

 

This paper is organized as follows: Section 2 first reviews the 1-D wavelet 

transform, and then introduces the 2-D inverse wavelet transform for image 
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restoration. Image-restoration strategies based on the selection of the smooth 

subimage or the detail subimages with specific directional structures for statistical and 

structural textures are discussed. Orthogonal and biorthogonal basis functions used for 

wavelet filtering are also addressed in this section. Section 3 presents the 

experimental results on a variety of structural and statistical textures including 

machined surfaces, natural wood, textile fabrics, sandpaper and leather. Effects of 

different wavelet bases, number of multiresolution levels, subimage restoration 

strategies, and changes in image rotation are evaluated thoroughly in this section. This 

paper is concluded in Section 4. 

 

2. WAVELET ANALYSIS FOR DEFECT DETECTION 

 

2.1 Review of 1-D wavelet transforms 

 

We start with the brief review of 1-D wavelet transform. The wavelet transform 

is defined as a decomposition of a signal )(tf  with a family of real orthonormal 

bases )(, tkjψ  generated from a kernel function )(tψ  by dilations and translations 

[39,40]. 

 )2(2)( 2/
, ktt jj
kj −= −− ψψ   

where j  and k  are integers. The mother wavelet )(tψ  has to satisfy 

 ∫ = 0)( dttψ   

Since )(, tkjψ  forms an orthonormal set, the wavelet coefficients of the signal )(tf  

can be calculated by the inner product 

 dtttfttfa kjkjkj )()()(,)( ,,, ψψ ⋅== ∫   
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For the wavelet expansion, signal )(tf  can be reconstructed via 

 ∑ ⋅==
kj

kjkjkjkj tatatf
,

,,,, )()(,)( ψψ   

The multiresolution formulation needs two closely related basic functions. In addition 

to the mother wavelet )(tψ , we will need another basic function, called the scaling 

function )(tφ . )(tφ  can be expressed in terms of a weighted sum of shifted )2( tφ  

as [41] :  

 ∑ −⋅=
n

ntnlt )2()(2)( φφ  (1) 

where snl )'(  are the scaling (lowpass) coefficients, and the 2  maintains the norm 

of the scaling function with the scale of two. The scaling coefficients )(nl  must 

satisfy 

 2)( =∑
n

nl  

and 

 


 =

=−⋅∑ otherwise
kif

knlnl
n 0

01
)2()(  

The dilation equation above (eq.(1)) is fundamental to the theory of scaling functions. 

The mother wavelet )(tψ  is related to the scaling function via 

 ∑ −=
n

ntnht )2()(2)( φψ  (2) 

where snh )'(  are the wavelet (highpass) coefficients. They are required by 

orthogonality to be related to the scaling coefficients by 

 )1()1()( nlnh n −−=  

The mother wavelet )(tψ  is good at representing the detail and high-frequency parts 

of a signal. The scaling function )(tφ  is good at representing the smooth and 

low-frequency parts of the signal. 

 

In most practical applications, one never explicitly calculates the scaling function 
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)(tφ  and wavelet )(tψ , but performs the transform using the scaling coefficients 

)(nl  and the wavelet coefficients )(nh . In forward wavelet analysis, a J-level 

discrete decomposition can be written as 

 ∑ −=
n

n ntctf )()( ,0 φ   

 ∑ ∑∑
=

+=
k

J

j k
kjkjkJkJ tdtc

1
,,,, )()( ψφ  (3) 

where coefficients nc ,0  are given, and coefficients kjc ,  and k,jd  at resolution j  

are related to the coefficients kjc ,1−  at level 1−j  by the following recursive 

equations [40] : 

 ∑ −= −
n

kjkj knlcc )2(,1,  (4a) 

and 

 ∑ −= −
n

kjkj knhcd )2(,1,  (4b) 

for Jj ,...,2,1= . 

 

In the expansion above (eq. (3)), the first summation gives a function that is a low 

resolution or coarse approximation of )(tf , Which represents the smooth part of 

)(tf . For each increasing level j  in the second summation, a higher or fine 

resolution function is added, which represents the detail part of )(tf . Eqs. 4(a) and 

4(b) show that the scaling and wavelet coefficients at different levels of scale can be 

obtained by convolving the expansion coefficients at scale 1−j  by the 

time-reversed recursion coefficients )( nl −  and )( nh − , then down-sampling (taking 

every other term) to give the expansion coefficients at the next level of j . 

 

In backward wavelet synthesis, a reconstruction of the original fine scale 

coefficients of the signal can be made from a combination of the scaling coefficients 
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and wavelet coefficients at a coarse resolution. Because all of these functions are 

orthonormal, we have 

 ( ) ( )∑∑ −+−= ++
n

nj
n

njkj nkhdnklcc 22 ,1,1,  (5) 

 

 

The synthesis operation of eq.(5) is equivalent to up-sampling the coefficients njc ,1+  

and n,jd 1+  (inserting a zero between each of the original terms) in the coarser level 

j+1, and then convolving with )(nl  and )(nh , individually, to obtain the scaling 

coefficients in the finer level j. The synthesis process can be recursively continued to 

the original level. The analysis and synthesis procedures lead to the 

pyramid-structured wavelet decomposition [28]. 

 

2.2 2-D wavelet reconstruction 

 

    The 1-D multiresolution wavelet decomposition can be easily extended to two 

dimensions by introducing separable 2-D scaling and wavelet functions as the tensor 

products of their one-dimensional complements. Hence, we obtain 

 )()(),( yxyxLL φφφ ⋅=  

 )()(),( yxyxLH ψφψ ⋅=  

 )()(),( yxyxHL φψψ ⋅=  

 )()(),( yxyxHH ψψψ ⋅=  

 

The 2-D wavelet analysis operation consists of filtering and down-sampling 

horizontally using 1-D lowpass filter L  (with impulse responses )(il ) and highpass 

filter H  (with impulse responses )( jh ) to each row in the image ),( yxf , and 
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produces the coefficient matrices ),( yxf L  and ),( yxf H . Vertically filtering and 

down-sampling follows, using the lowpass and highpass filters L  and H  to each 

column in ),( yxf L  and ),( yxf H , and produces 4 subimages ),( yxf LL , ),( yxf LH , 

),( yxf HL  and ),( yxf HH  for one level of decomposition. ),( yxf LL  is a smooth 

subimage, which represents the coarse approximation of the image. ),( yxf LH , 

),( yxf HL  and ),( yxf HH  are detail subimages, which represent the horizontal, 

vertical and diagonal directions of the image. Figure 1 depicts 1 stage in a 

multiresolution pyramid decomposition of an image. Figure 2 shows the 

decomposition result of 2 multiresolution levels, where ),()( yxf i  represents the 

decomposed subimage at resolution level i . The detailed 2-D pyramid decomposition 

algorithm, with periodic boundary conditions applied, can be expressed as follows :  

 

Let =× NM the original image size of ),( yxf  

=)(il the analysis lowpass coefficients of a specific wavelet basis, 

1-N,0,1,2,i l…= , where lN  is the support length of the filter L . 

=)( jh the analysis highpass coefficients of a specific wavelet basis, 

1N0,1,2,...,j h −= , where hN  is the support length of the filter H . 

Then, 

∑
−

=

+⋅=
1

0
),)2(()(1),(

lN

il
L yMixfil

N
yxf mod  

∑
−

=

+⋅=
1

0
),)2(()(1),(

hN

jh
H yMjxfjh

N
yxf mod  

 

for 1−…=
2
M,0,1,2,x  and 1N0,1,2,...,y −= . 

 

∑
−

=

+⋅=
1

0
))2(,()(1),(

lN

i
L

l
LL Niyxfil

N
yxf mod  (6a) 
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∑
−

=

+⋅=
1

0
))2(,()(1),(

hN

j
L

h
LH Njyxfjh

N
yxf mod  (6b) 

∑
−

=

+⋅=
1

0
))2(,()(1),(

lN

i
H

l
HL Niyxfil

N
yxf mod  (6c) 

∑
−

=

+⋅=
1

0
))2(,()(1),(

hN

j
H

h
HH Njyxfjh

N
yxf mod  (6d) 

 

for 1−…=
2
M,0,1,2,x  and 1

2
N0,1,2,...,y −= . 

 

The 2-D pyramid algorithm can iterate on the smooth subimage ),( yxf LL  to obtain 

four coefficient matrices in the next decomposition level. 

 

The inverse 2-D wavelet transform can be implemented using a backward 2-D 

pyramid algorithm. The 2-D wavelet synthesis operation consists of up-sampling and 

filtering vertically using 1-D synthesis lowpass filter 
~
L  (with impulse responses 

)(
~

il ) and highpass filter 
~
H  (with impulse responses )(

~
jh ) to each column in the 

subimage. The results are added. Horizontal up-sampling and filtering then follows, 

using the lowpass and highpass filters 
~
L  and 

~
H , to each row of the reversed image. 

Figure 3 shows 1 stage in a wavelet reconstruction. In this study, we do not want to 

completely restore the textured image under inspection with 100% accuracy. Rather, 

we would like to eliminate all regular, repetitive textures in the reconstructed image 

by selecting proper smooth or detail subimages for wavelet synthesis. Therefore, the 

reconstructed subimages are not added in the intermediate synthesis levels. The 

summation operation of the selective reconstructed-subimages is only performed at 

the original level (level 0). 

 



 14

The detailed 2-D wavelet synthesis procedure for each of the four decomposed 

subimages ),( yxf LL , ),( yxf LH , ),( yxf HL  and ),( yxf HH  is individually described 

as follows :  

 

Let =×CR the size of a subimage to restore 

=)(
~

il the synthesis lowpass coefficients of a specific wavelet basis, 

~
l

N,0,1,2,i …= , where ~
l

N  is the support length of the filter 
~
L . 

 

 

=)(
~

jh  the synthesis highpass coefficients of a specific wavelet basis, 

~
h

N,0,1,2,j …= , where ~
h

N  is the support length of the filter 
~
H . 

 

1. The synthesis of the smooth subimage ),( yxf LL  

    Upsample ),( yxf LL  by a factor of 2 along the y-axis and filter with lowpass 

filter 
~
L : 

Let ),()2,( yxfyxf LLS y
=  and 0)12,( =+yxf

yS , 

for 1-R,0,1,2,x …=  and 1-C,0,1,2,y …= . 

 ∑
−

=

− +⋅=
1

0

~
1

~

~

)2)(,()(1),(
l

yy

N

i
S

l

S Ciyxfil
N

yxf mod  

    Upsample 1−
ySf  by a factor of 2 along the x-axis and filter with lowpass filter 

~
L : 

Let ),(),2( 11 yxfyxf
yx SS
−− =  and 0),12(1 =+− yxf

xS  

for 1-R,0,1,2,x …=  and 1-,2C0,1,2,y …= . 
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 ∑
−

=

− +⋅=
1

0

1
~

~

~

),2)(()(1),(
l

x

N

i
S

l

S yRixfil
N

yxf mod  (7a) 

 

2. The synthesis of the horizontal detail subimage ),( yxf LH  

Upsample ),( yxf LH  along the y-axis and filter with highpass filter 
~
H : 

Let ),()2,( yxfyxf LHhy
=  and 0)12,( =+yxf

yh , 

for 1-R,0,1,2,x …=  and 1-C,0,1,2,y …= . 

 ∑
−

=

− +=
1

0

~
1

~

~

)2)(,()(1),(
h

yyh

N

j
h

h

Cjyxfjh
N

yxf mod  

Upsample 1−
yh

f  along the x-axis and filter with lowpass filter 
~
L : 

Let ),(),2( 11 yxfyxf
yx hh
−− =  and 0),12(1 =+− yxf

xh , 

for 1-R,0,1,2,x …=  and 1-,2C0,1,2,y …= . 

 ∑
−

=

− +=
1

0

1
~

~

~

),2)(()(1),(
l

x

N

i
h

l

h yRixfil
N

yxf mod  (7b) 

The vertical and diagonal detail subimages ),( yxf HL  and ),( yxf HH  can be 

reconstructed in a similar way as ),( yxf LH  with corresponding filtering operations 

(
~
L  in column first, and then 

~
H  in row for ),( yxf HL ; 

~
H  in both column and row 

for ),( yxf HH ) to obtain the restored images ),( yxfv  and ),( yxfd , respectively. 

 

2.3 Selection of wavelet bases and subimages for reconstruction 

 

In this study, we evaluate both orthogonal and biorthogonal bases used to design 

the analysis filters L  and H  and synthesis filters 
~
L  and 

~
H . A central reason to 

use a particular basis function is to match the characteristics of the underlying texture. 
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An orthogonal basis function must satisfy [40] :  

 '' )()(
,, kkkJkJ dttt δφφ =⋅∫  (8a) 

 0)()( ',, =⋅∫ dttt kJkj φψ  (8b) 

 '''' )()(
,, kkjjkjkj dttt δδψψ ⋅=⋅∫  (8c) 

where  


 =

=
otherwise

jiif
ij 0

1
δ  

Biorthogonal wavelets were first introduced by Cohen et al. [42]. In this 

construction, orthonormal wavelets are generalized by using two sets of functions 

kj ,φ , kj ,ψ  and their dual kj.

~
φ , kj.

~
ψ . Biorthogonal wavelets are not orthogonal and 

do not satisfy the orthogonality relationship in eqs. 8(a)-8(c). However, they do satisfy 

the following biorthogonal relationships :  

 '' )()( ,

~

, kkkJkJ dttt δφφ =⋅∫  (9a) 

 0)()( ',

~

, =⋅∫ dttt kJkj φψ  (9b) 

 '''' )()( ,

~

, kkjjkjkj dttt δδψψ ⋅=⋅∫  (9c) 

Symmetric wavelets and scaling functions are made possible in the framework of 

biorthogonal bases, and they do not introduce phase shifts in the coefficients. The 

coefficients of the synthesis filters 
~
L  and 

~
H  are derived from the dual wavelet 

functions :  

 ∫ −⋅= dtnttnl )2()(
2

1)(
~~~
φφ  

 ∫ −⋅= dtnttnh )2()(
2

1)(
~~~
φψ  

The analogue to )1()1()( nlnh n −−=  is 

 )1()1()(
~

nlnh n −−=  (10a) 



 17

 )1()1()(
~

nlnh n −−=  (10b) 

For the orthogonal wavelets, the synthesis filters 
~
L  and 

~
H  are the same as the 

analysis ones L  and H . 

 

There are no simple rules for selecting a wavelet to use for a specific analysis. 

Evaluation of all wavelet basis functions is beyond the limit of the experiments. 

However, we study a few popular orthogonal wavelets including : 

 

1. Haar [43] : the only symmetric exact reconstruction filter with the shortest support 

length of 2. 

2. Daublets [44] : the first type of continuous orthogonal wavelets with compact 

support. Two Daublets families D4 and D12 are considered, where the number 

represents the length of support. Daublets are asymmetric bases. 

3. Symmlets [44] : the Symmlets wavelets are constructed to be as nearly symmetric 

as possible. Two Symmlets families S8 and S20 are considered, where the number 

also represents the support length. 

 

For biorthogonal wavelets, we consider two families of B-spline polynomial 

functions [42] : BS2.2 and BS3.9, where the first number indicates the degree of the 

polynomial for the wavelets, and the second number indicates the support length of 

the dual wavelet. The coefficient values [40,45] of the analysis filters L  and H  

and the synthesis filters 
~
L  and 

~
H  for the seven wavelet bases aforementioned are 

listed in the appendix. 

 

Three important factors for wavelet selection are the smoothness, the spatial 
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localization and the frequency localization. In general, the wavelets with wider 

support are smoother and have better frequency localization, but are spatially less 

localized. In terms of computational complexity, the wavelet support should be short. 

However, it cannot be too short to prevent noise and block effect in the restored 

image. 

The wavelet synthesis procedure described in section 2.2 can be recursively 

applied to any subimage from its coarsest level to the finest level. Denote )( )(1 ifW −  

by the iteration of inverse wavelet transformation of a subimage f  from 

multiresolution level i  to level 0. In this study, defects in both structural and 

statistical textures are investigated. In general, structural textures are anisotropic and 

statistical textures are isotropic. We propose two synthesis strategies to enhance the 

defects in the restored image. The first synthesis strategy is to reconstruct only the 

smooth subimage )(J
LLf  at a proper resolution level J. Since a statistical texture is 

isotropic, reconstructing a smooth subimage at its coarser resolution will remove (or 

blur) all regular, repetitive texture patterns (lowpass signals), and reserve only the 

local anomalies (highpass signals) in the restored image. 

 

The second synthesis strategy is to reconstruct some selective detail subimages. 

A decomposition in octave bands yields three detail subimages with horizontal, 

vertical and diagonal directions. Since a structural texture may present high 

directionality, reconstructing the detail subimages with direction emphasis different 

from that of the regular texture will remove all repetitive, directional patterns in the 

original image, and preserve only local anomalies in the restored image. For instance, 

given a machined surface with vertical feed marks in the image, reconstructing only 

horizontal detail subimages )(i
LHf   and diagonal detail subimages )(i

HHf  at resolution 

levels J,...,2,1 , i.e., 
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 [ ]∑
=

−− +
J

i

i
HH

i
LH fWfW

1

)(1)(1 )()( , 

will remove all vertical feed marks in the restored image. The repetitive, directional 

pattern will result in an approximately uniform gray level, whereas the local 

anomalies will yield distinct gray levels in the restored image. 

In this paper, we are considering a supervised surface inspection problem. 

Supervised systems are common in machine vision and are appropriate for controlled 

circumstances in manufacturing. The number of multiresolution levels and the 

decomposed subimages used for image reconstruction are predetermined from a 

texture model. The impact of wavelet bases, number of multiresolution levels and 

subimage synthesis strategies on detection results are empirically evaluated in the 

following section. 

 

3. EXPERIMENTAL RESULT 

 

    In this section, we present the experimental results on a variety of structural and 

statistical textures found in industry to evaluate the performance of the proposed 

defect detection method. All experiments are implemented on a personal computer. 

The images are 256256×  pixels wide with 8-bit gray levels. 

 

    In the proposed method, there are three main factors that may affect the 

inspection results : 1) selection of wavelet bases, 2) selection of the number of 

multiresolution levels, and 3) selection of decomposed subimages for reconstruction. 

Besides these, the effect of changes in image rotation is also evaluated in this section. 

 

3.1 Selection of wavelet bases 
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    In this experiment, we evaluate five orthogonal wavelet bases including Haar, 

Daublets D4 and D12, Symmlets S8 and S20, and two B-spline biorthogonal wavelet 

bases BS2.2 and BS3.9. Figure 4(a) shows a structural texture with repetitive vertical 

line pattern and an irregular “Z” defect. Figures 4(b)-4(h) display the restoring results 

from wavelet bases Haar, D4, D12, S8, S20, BS2.2 and BS3.9, respectively, based on 

the selective horizontal detail subimages )(i
LHf  and diagonal detail subimages )(i

HHf  

in three multiresolution levels, i.e., 
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    The image ),( yxf
∧

 restored from horizontal and diagonal detail subimages 

remove all vertical lines in the original image and preserve only the edges of the 

defect “Z”. The defect in the restored image can be efficiently separated from the 

background using a simple binary thresholding technique such as the one proposed by 

Otsu [46]. The binary thresholding results of Figures 4(b)-4(h) are demonstrated in 

Figures 5(a)-5(g), respectively. 

 

    Figure 6(a) shows a structural texture of wood with repetitive, horizontal stripes. 

Figures 6(b)-6(h) display the restoring results from the seven wavelet bases based on 

the selective vertical and diagonal detail subimages )(i
HLf  and )(i

HHf  in three 

multiresolution levels, i.e., 
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The binary thresholding results of Figures 6(b)-6(h) are presented in Figures 

7(a)-7(g). 
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Figure 8(a) shows a statistical texture of sandpaper with a scratched “A”. Figure 

9(a) shows one additional statistical texture of sandpaper with a wear defect. The 

restoring results of Figure 8(a) and Figure 9(a) from the seven wavelet bases are, 

respectively, displayed in Figures 8(b)-8(h) and Figures 9(b)-9(h). Both statistical 

textures use the smooth subimage at resolution level 3 for reconstruction, i.e., 

 )(),( )3(1
LLfWyxf −

∧

=  

The binary thresholding results of Figures 8(b)-8(h) and Figures 9(b)-9(h) are 

presented in Figures 10(a)-10(g) and Figures 11(a)-11(g), respectively. 

 

    It can be seen from Figure 4 through Figure 11 that the choice of wavelet bases 

has only small effects on the detection results for structural textures, and all wavelet 

bases can enhance the defects in the restored images. However, orthogonal wavelets 

generally outperform biorthogonal wavelets since biorthogonal wavelets lack of 

orthogonality properties. The B-spline biorthogonal wavelets used in statistical 

textures cannot sufficiently capture all defect pixels (Figures 10(f) and 10(g)), or they 

generate noisy effect (Figure 11(f) and 11(g)). For a given orthogonal wavelet 

function, the basis with longer support may not generate better detection result (such 

as D12 vs. D4 or S20 vs. S8). The longer supports may oversmooth the local 

anomalies, and are less computationally efficient, compared to the shorter supports. 

The Haar wavelet has a very compact support of 2. It works well for structural 

textures with high directionality (restoring detail subimages), but performs poorly for 

statistical textures (restoring the smooth subimage) due to the block effect as shown in 

Figures 8(b) and 9(b). Based on the consideration of both detection effectiveness and 

computational efficiency, orthogonal wavelet bases with compact support length such 
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as D4 and S8 are the best choice for the application of defect detection in textured 

surfaces. 

 

3.2 Selection of multiresolution levels 

 

    One of the most important aspects of texture is scale. The fine and coarse 

resolution components capture the fine and coarse scale features in the image. 

Decomposition of a textured image in its proper resolution will effectively highlight 

the local anomalies in the homogeneous surface. 

 

    The two sandpaper textures shown in Figures 8(a) and 9(a) are used to evaluate 

the impact of varying number of multiresolution levels on the reconstruction result. 

Figures 12(b)-12(f) and Figures 13(b)-13(f) present the restoration results from 

resolution levels 2, 3, 4, 5 and 6 for Figures 12(a) and 13(a), respectively. All these 

images are soly reconstructed from the smooth subimage, i.e., )( )(1 J
LLfW − , with the 

wavelet basis S8. Both Figures 12 and 13 reveal that too small the number of 

multiresolution levels (such as 2=J ) cannot sufficiently separate defects from the 

repetitive texture pattern. However, too large the number of multiresolution levels 

(such as 5≥J ) yields the fusion effect of the anomalies, any may result in false 

detection. The number of multiresolution levels between 3 and 4 is most appropriate 

to enhance defects in the restored image. Experiments on a variety of textures images 

have cinfirmed that 3 multiresolution levels are generally sufficient for defect 

detection applications. 

 

3.3 Selection of decomposed subimages for reconstruction 
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    For each textured image, we can select either the smooth subimage or some 

specific detail subimages for reconstruction. All images in this experiment are 

reconstructed with wavelet basis S8 in 3 multiresolution levels. Figures 14(a) and 

15(a) show two vertical-line textures, one containing a line defect, and the other 

containing blob defects. The restoration results from the smooth subimage, i.e., 

)( )3(1
LLfW − , for figures 14(a) and 15(a) are presented in Figures 14(b) and 15(b), 

respectively. The restoration results from the direct sum of horizontal and diagonal 

detail subimages, i.e., 
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for Figures 14(a) and 15(a) are presented in Figures 14(d) and 15(d). For structural 

textures with high directionality, the restoration results as shown in Figures 14 an 15 

reveal that the selective detail subimages can effectively remove all repetitive line 

patterns, and enhance the edges of defects in the restored image. However, residuals 

of repetitive lines remain in the restored image if the smooth subimage is selected for 

reconstruction. Therefore, reconstructing selective detail subimages is preferred for 

enhancing defects in structural textures with high directionality. 

 

Figures 16(a) and 17(a) show two statistical textures of sandpaper. Restoration 

results from the smooth subimage, i.e., )( )3(1
LLfW − , are presented in Figures 16(b) 

and 17(b), respectively. Restoration results from the direct sum of all three detail 

subimages, i.e., 
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are displayed in Figures 16(d) and 17(d). For statistical textures with isotropic 

patterns, it can be seen from Figures 16 and 17 that reconstructing detail subimages 

cannot enhance the defects in the restored images, and no defects are detected in the 

corresponding binary images (Figures 16(e) and 17(e)). Reconstructing the smooth 

subimages can effectively enhance the defect regions in the restored image, and it 

well separates defects from the background in the corresponding binary images 

(Figures 16(c) and 17(c)). Therefore, reconstructing the smooth subimage is preferred 

for enhancing defects in statistical textures. 

 

3.4 The effect of changes in image rotation 

 

    In this study, textured image can be reconstructed from either the smooth 

subimage or the selective detail subimages. Since a smooth subimage is a coarse 

approximation of the original fine image, varying rotational angle of the test image 

will not affect the restoration result. However, the three detail subimages represent the 

directional information of a texture in horizontal, vertical and diagonal directions. 

Given a set of predetermined detail subimages, the restoration result is sensitive to the 

change in image rotation. 

 

All images used in this experiment are reconstructed with wavelet basis S8 in 3 

multiresolution levels. Figure 18 show a statistical texture of sandpaper in three 

different orientations. Figures 19(a)-19(f) present the restoration results from the 

smooth subimages, i.e., )( )3(1
LLfW − , and the corresponding binary results. It can be 

seen from Figure 19 that the restoration based on the smooth subimage is 

rotation-invariant. All defects are reliably detected, regardless of the image orientation. 

Figure 20 shows a line-structured texture in three different orientations. Given that 
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only horizontal and diagonal detail subimages are used for reconstruction, i.e., 
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the corresponding restoration results of Figures 20(a)-20(c) are demonstrated in 

Figures 21(a)-21(c), respectively. Since the vertical detail subimages are not included 

in the reconstruction, all vertical lines in Figure 20(a) are completely removed in the 

restored image as shown in Figure 21(a). However, the repetitive line patterns in 

Figures 20(b) and 20(c) are not in vertical direction. The reconstruction procedure 

using detail subimages LHf  and HHf  preserve the repetitive lines, along with the 

defects in the restored images as seen in Figures 21(b) and 21(c). Therefore, the 

reconstruction of highly structural textures from selective detail subimages are 

sensitive to image rotation. 

 

    Bases on the experimental results discussed above, we can conclude that in the 

application of wavelet transforms for defect detection in textured images : 

 

1) orthogonal wavelet bases with compact support length such as D4 or S8 are 

preferred in order to avoid leakage of subtle anomalies and have fast computation (but 

it cannot be too short to ensure sufficient smoothness). 

 

2) the number of multiresolution levels between 3 and 4 is generally sufficient to 

remove regular, repetitive textures and enhance defects in the restored image. 

 

3) reconstruct only the smooth subimage for statistical textures, and restore the detail 

subimages which have different directional emphasis with respect to that of the 

repetitive pattern for structural textures with explicit directionality. Note that 
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smooth-subimage reconstruction is rotation-invariant. Detail-subimage reconstruction 

is rotation-dependent and, therefore, the orientation of a structural texture must be 

known a priori or predetermined. 

 

    In order to demonstrate the effectiveness of the proposed wavelet reconstruction 

scheme with the suggested selections above for defect detection, a few more textures 

found in industry are also examined. All subsequent test samples are reconstructed 

with wavelet basis S8 in three multiresolution levels. 

 

    Figure 22(a) shows a milled surface in vertical lay direction. The reconstruction 

result shown in Figure 22(b) is obtained from the horizontal and diagonal detail 

subimages, i.e., 
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Note that the subtle scratch is reliably separated in the binary image as shown in 

Figure 22(c). Figure 23(a) shows a natural wood image. The reconstruction result 

shown in Figure 23(b) is based on the vertical and diagonal detail subimages, i.e., 
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The line pattern in wood is less regular than that in the machined surface. However, 

the defect in wood is also reliably separated in the binary image as shown in Figure 

23(c). 

 

    Figures 24(a) and 24(b) present two textile fabrics. The reconstruction results 

shown in Figures 24(c) and 24(d) are obtained from the smooth-subimages, i.e., 

)( )3(1
LLfW −  for both fabrics. Since the textile fabrics do not explicitly show clear lines 
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on the surfaces, the smooth subimages instead of the detail subimages are used for 

reconstruction. The stain and shedding defects in the fabrics are well separated in the 

binary images as shown in Figures 24(e) and 24(f). Figure 25(a) shows a leather 

image. The restored image shown in Figure 25(b) is obtained from the smooth 

subimage, i.e., )( )3(1
LLfW − , and the defect is well captured in the binary image as 

shown in Figure 25(c). 

 

4.  CONCLUSIONS 

 

In this paper we have considered the problem of detecting local defects 

embedded in a homogeneous texture. Since local defects exhibit no distinct textural 

properties, this task is clearly different from segmentation by texture. Classical texture 

segmentation techniques need to extract a set of textural features for each image pixel 

defined in a neighborhood window and use high-dimensional classifiers to 

discriminate between pixels in the textured image. The proposed method does not rely 

on local textural features in a pixel-by-pixel basis. It is based on an image restoration 

scheme using the multiresolution wavelet transforms, and results in considerable 

computational savings. With proper selection of a smooth subimage or detail 

subimages in different multiresolution levels for image reconstruction, the global 

repetitive texture pattern can be effectively removed and local anomalies can be 

enhanced in the restored image. A simple binary thresholding is therefore used to 

separate the defective regions from the homogeneous regions in the restored image. 

 

The effectiveness of the proposed wavelet reconstruction scheme is determined 

by the wavelet bases, the number of multiresolution levels and the decomposed 

subimages used for reconstruction. The experimental results have revealed that 
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orthogonal wavelet bases are more appropriate than biorthogonal bases for the 

application of defect detection in textured surfaces. Orthogonal wavelet bases that are 

sufficiently compact are preferred to capture local deviations in homogeneous 

textured surfaces. Too large the number of multiresolution levels causes the fusion 

effect of defects in the restored image, whereas too small the number of 

multiresolution levels cannot completely separate defective regions from the 

homogeneous regions. The number of multiresolution levels between 3 and 4 is 

generally well-suited for most textures to capture local anomalies in the restored 

image. For statistical textures, only the smooth subimage, which represents the coarse 

approximation of the original image, needs to be included in the reconstruction to 

enhance the defects in the restored image. The reconstruction from a smooth 

subimage is rotation-invariant and, therefore, the test image can be presented in 

arbitrary directions. For structural textures with high directionality, the selective detail 

subimages, which have different direction emphasis from the original repetitive 

pattern, are included in the reconstruction to remove all repetitive textures. The 

reconstruction from selective detail subimages is rotation-dependent and, therefore, 

the direction of the test image must be fixed or predetermined. 

 

Since the proposed method is a supervised one, the number of multiresolution 

levels and the decomposed subimages used for reconstruction must be manually 

predetermined for each texture class. The task of automatic selection of the number of 

multiresolution levels and the decomposed subimages for the best enhancement of 

defects and removals of repetitive texture patterns based on the gray-level variance in 

the restored image and the energy in each decomposed subimage is currently under 

investigation. 
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Figure 1.  One stage in a multiresolution image decomposition (forward wavelet 

analysis). 
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Figure 2.  A representation of 2-level image decomposition. 
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Figure 3.  One stage in a multiresolution image reconstruction (backward wavelet 

synthesis). 
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(a) Original image (b) Haar 

  
(c) D4 (d) D12 

  
(e) S8 (f) S20 

  
(g) BS2.2 (h) BS3.9 

 

Figure 4.  The effect of various wavelet bases on image reconstruction for a 

line-texture : (a) the original textured image ; (b) – (h) reconstruction results from 

wavelet bases Haar, D4, D12, S8, S20, BS2.2 and BS3.9, respectively. (These images 

are reconstructed from the horizontal and diagonal detail subimages in three 

multiresolution levels.) 
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 (a) Haar 

  
(b) D4 (c) D12 

  
(d) S8 (e) S20 

  
(f) BS2.2 (g) BS3.9 

 

Figure 5.  (a) – (g) Binary thresholding results of the reconstructed images 

shown in Figures 4(b) – 4(h), respectively. 
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(a) Original image (b) Haar 

  
(c) D4 (d) D12 

  
(e) S8 (f) S20 

  
(g) BS2.2 (h) BS3.9 

 

Figure 6.  The effect of various wavelet bases on image reconstruction for a 

wood-texture : (a) the original textured image ; (b) – (h) reconstruction results from 

wavelet bases Haar, D4, D12, S8, S20, BS2.2 and BS3.9, respectively. (These images 

are reconstructed from the vertical and diagonal detail subimages in three 

multiresolution levels.) 
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 (a) Haar 

  
(b) D4 (c) D12 

  
(d) S8 (e) S20 

  
(f) BS2.2 (g) BS3.9 

 

Figure 7.  (a) – (g) Binary thresholding results of the reconstructed images 

shown in Figures 6(b) – 6(h), respectively. 
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(a) Original image (b) Haar 

  
(c) D4 (d) D12 

  
(e) S8 (f) S20 

  
(g) BS2.2 (h) BS3.9 

 

Figure 8.  The effect of various wavelet bases on image reconstruction for a 

sandpaper surface with scratch defects : (a)the original image; (b)–(h) reconstruction 

results from wavelet bases Haar, D4, D12, S8, S20, BS2.2 and BS3.9, respectively. 

(These images are reconstructed from the smooth subimages at the third resolution 

level.) 
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(a) Original image (b) Haar 

  
(c) D4 (d) D12 

  
(e) S8 (f) S20 

  
(g) BS2.2 (h) BS3.9 

 

Figure 9.  The effect of various wavelet bases on image reconstruction for a 

sandpaper surface with the wear defect : (a)the original image; (b)–(h) reconstruction 

results from wavelet bases Haar, D4, D12, S8, S20, BS2.2 and BS3.9, respectively. 

(These images are reconstructed from the smooth subimages at the third resolution 

level.) 
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 (a) Haar 

  
(b) D4 (c) D12 

  
(d) S8 (e) S20 

  
(f) BS2.2 (g) BS3.9 

 

Figure 10.  (a) – (g) Binary thresholding results of the reconstructed images shown 

in Figures 8(b) – 8(h), respectively. 
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 (a) Haar 

  
(b) D4 (c) D12 

  
(d) S8 (e) S20 

  
(f) BS2.2 (g) BS3.9 

 

Figure 11.  (a) – (g) Binary thresholding results of the reconstructed images shown in 

Figures 9(b) – 9(h), respectively. 
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(a) Original image (b) J=2 

  
(c) J=3 (d) J=4 

  
(e) J=5 (f) J=6 

 

Figure 12. The effect of various number of multiresolution levels on image 

reconstruction : (a) the original sandpaper image with scratch defects ; (b) – (f) 

reconstruction results from multiresolution levels J = 2, 3, 4, 5 and 6, respectively. 

(The reconstruction is based on the smooth subimage with wavelet basis S8.) 
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(a) Original image (b) J=2 

  
(c) J=3 (d) J=4 

  
(e) J=5 (f) J=6 

 

Figure 13. The effect of various number of multiresolution levels on image 

reconstruction : (a) the original sandpaper image with a wear defect ; (b) – (f) 

reconstruction results from multiresolution levels J = 2, 3, 4, 5 and 6, respectively. 

(These images are reconstructed from the smooth subimages with wavelet basis S8.) 
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(a) Original image 

  
(b) (c) 

  
(d) (e) 

 

Figure 14. The effect of selective subimages on image reconstruction for the 

line-structured texture with a line defect : (a) the original image; (b) the restored 

image from the smooth subimage; (c) the binarized image of (b); (d) the restored 

image from the horizontal and diagonal detail subimages; (e) the binarized image of 

(d). 
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(a) Original image 

  
(b) (c) 

  
(d) (e) 

 

Figure 15. The effect of selective subimages on image reconstruction for the 

line-structured texture with blob defects : (a) the original image; (b) the restored 

image from the smooth subimage; (c) the binarized image of (b); (d) the restored 

image from the horizontal and diagonal detail subimages; (e) the binarized image of 

(d). 
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(a) Original image 

  
(b) (c) 

 
 

(d) (e) 
 

Figure 16. The effect of selective subimages on image reconstruction for the 

sandpaper with scratch defects : (a) the original image; (b) the restored image from 

the smooth subimage; (c) the binarized image of (b); (d) the restored image from the 

horizontal and diagonal detail subimages; (e) the binarized image of (d). 



 49

 
(a) Original image 

  
(b) (c) 

  

(d) (e) 
 

Figure 17. The effect of selective subimages on image reconstruction for the 

sandpaper with a wear defect : (a) the original image; (b) the restored image from the 

smooth subimage; (c) the binarized image of (b); (d) the restored image from the 

horizontal and diagonal detail subimages; (e) the binarized image of (d). 
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(a) 

 
(b) 

 
(c) 

 
Figure 18.  A statistical texture of sandpaper in three different orientations. 
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(a) (d) 

(b) (e) 

(c) (f) 
 

Figure 19. The effect of changes in image rotation for the statistical textures 

shown in Figure 18: (a), (b), (c) the reconstruction results from the smooth subimages 

for the sandpaper in three rotations; (d), (e), (f) the corresponding binary images of (a), 

(b) and (c), respectively. 
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(a) 

 
(b) 

 
(c) 

 
Figure 20.  A line-structured texture in three different orientations. 
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

 

Figure 21. The effect of changes in image rotation for the structural textures 

shown in Figure 20: (a), (b), (c) the reconstruction results from the horizontal and 

diagonal detail subimages for the line-structured texture in three rotations; (d), (e), (f) 

the corresponding binary images of (a), (b) and (c), respectively. 
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(a) (a) 

  
(b) (b) 

  
(c) (c) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22. Detecting defects in a
milled surface:(a) the
original image;(b) the
reconstruction result from
the horizontal and
diagonal detail subimages;
(c) the binarized result of
(b). 

Figure 23. Detecting defects in wood:
(a) the original image; (b)
the reconstruction result
from the vertical and
diagonal detail subimages;
(c) the binarized result of
(b). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 24. Detecting defects in texture fabrics : (a), (b) two original fabric 

images; (c), (d) the reconstruction results from the smooth subimages for (a) and (b), 

respectively; (e), (f) the corresponding binary thresholding results of (c) and (d). 
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(a) 

 
(b) 

 
(c) 

 

Figure 25. Detecting defects in leather : (a) the original leather image; (b) the 

reconstruction result from the smooth subimage; (c) the binarized result of (b). 
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APPENDIX 

(A) Orthogonal wavelet bases 

Wavelet basis 
Highpass filters 

H，H~  

Lowpass filters 

L， L~  

Ｈaar  [00]0.707106781 
[01]-0.707106781 

[00]0.707106781 
[01]0.707106781 

D4  

[00] 1.2940952255126037 e-01 
[01]2.24143868042013390 e-01 
[02]- 8.36516303737807940 e-01 
[03]4.82962913144534160 e-01 

[00].4.82962913144534160 e-01 
[01].8.36516303737807940 e-01 
[02].2.24143868042013390 e-01 
[03].-1.29409522551260370 e-01 

D12  

[00]-1.077301085000 e-03 
[01]-4.777257511000 e-03 
[02]5.538422010000 e-02 
[03]3.158203931800 e-02 
[04]2.752286553000 e-02 
[05]-9.750160558700 e-02 
[06]-1.297668675670 e-01 
[07]2.262646939650 e-01 
[08]3.152503517090 e-01 
[09]-7.511339080210 e-01 
[10]4.946238903980 e-01 
[11]1.115407433500 e-01 

[00]1.115407433500 e-01 
[01]4.946238903980 e-01 
[02]7.511339080210 e-01 
[03]3.152503517090 e-01 
[04]-2.262646939650 e-01 
[05]-1.297668675670 e-01 
[06]9.750160558700 e-02 
[07]2.752286553000 e-02 
[08]-3.158203931800 e-02 
[09]5.538422010000 e-02 
[10]4.777257511000 e-03 
[11]-1.077301085000 e-03 

S8 

[00]0.07576571 
[01]-0.02963553 
[02]-0.4976187 
[03]0.8037388 
[04]-0.2978578 
[05]-0.09921954 
[06]0.0126039 
[07]0.0322231 

[00]0.0322231 
[01]-0.01260397 
[02]-0.09921954 
[03]0.2978578 
[04]0.8037388 
[05]0.4976187 
[06]-0.02963553 
[07]-0.07576571 

S20 

[00]-0.0004593294 
[01]-0.00005703608 
[02]0.004593174 
[03]0.0008043589 
[04]-0.02035494 
[05]-0.005764912 
[06]0.04999497 
[07]0.03199006 
[08]-0.03553674 
[09]-0.3838268 
[10]0.76951 
[11]-0.4716907 
[12]-0.07088054 
[13]0.1594943 
[14]0.01160989 
[15]-0.04592724 
[16]-0.01465383 
[17]0.008641299 
[18]0.00009563267 
[19]-0.0007701598 

[00]-0.07088054 
[01]0.4716907 
[02]0.76951 
[03]0.3838268 
[04]-0.03553674 
[05]-0.03199006 
[06]0.04999497 
[07]0.005764912 
[08]-0.02035494 
[09]-0.0008043589 
[10]0.004593174 
[11]0.00005703608 
[12]-0.000459329 
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(B) Biorthogonal wavelet bases 

 

Analysis filters Synthesis filters Wavelet 
basis Highpass H  Lowpass L  Highpass H~  Lowpass L~  

Bs1.1 [00]0.7071068 
[01]-0.7071068 

[00]0.7071068 
[01]0.7071068 

[00]0.7071068 
[01]-0.7071068 

[00]0.7071068 
[01] 0.7071068 

Bs2.2 

[00]-0.1767767 
[01]-0.3535534 
[02]1.06066 
[03]-0.3535534 
[04]-0.1767767 

[00]0.3535534 
[01]0.7071068 
[02]0.3535534 
 

[00]-0.3535534 
[01]0.7071068 
[02]-0.3535534 

[00]-0.1767767 
[01]0.3535534 
[02]1.06066 
[03]0.3535534 
[04]-0.1767767 

Bs3.9 

[00]0.0006797444 
[01]0.002039233 
[02]-0.005060319 
[03]-0.02061891 
[04]0.01411279 
[05]0.09913478 
[06]-0.01230014 
[07]-0.320192 
[08]-0.002050023 
[09]0.9421257 
[10]-0.941257 
[11]0.002050023 
[12]0.320192 
[13]0.0123014 
[14]-0.09913478 
[15]-0.01411279 
[16]0.02061891 
[17]0.005060319 
[18]-0.002039233 
[19]-0.0006797444 

[00]0.1767767 
[01]0.5303301 
[02]0.5303301 
[03]0.1767767 

[00]-0.1767767 
[01]0.5303301 
[02]-0.5303301 
[03]0.1767767 

[00]-0.0006797444 
[01]0.002039233 
[02]0.005060319 
[03]-0.02061891 
[04]-0.01411279 
[05]0.09913478 
[06]0.01230014 
[07]-0.320192 
[08]0.002050023 
[09]0.9421257 
[10]0.941257 
[11]0.002050023 
[12]-0.320192 
[13]0.0123014 
[14]0.09913478 
[15]-0.01411279 
[16]-0.02061891 
[17]0.005060319 
[18]0.002039233 
[19]-0.0006797444 

 

 

 


