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Anisotropic diffusion-based defect detection  

for low-contrast glass substrates 

Abstract 

In this paper, we propose an anisotropic diffusion scheme to detect defects in 

low-contrast surface images and, especially, aim at glass substrates used in 

TFT-LCDs (Thin Film Transistor-Liquid Crystal Displays).  In a sensed image of 

glass substrate, the gray levels of defects and background are hardly distinguishable 

and result in a low-contrast image.  Therefore, thresholding and edge detection 

techniques cannot be applied to detect subtle defects in the glass substrates surface.  

Although the traditional diffusion model can effectively smooth noise and irregularity 

of a faultless background in an image, it can only passively stop the diffusion process 

to preserve the original low-contrast gray values of defect edges.  The proposed 

diffusion method in this paper can simultaneously carry out the smoothing and 

sharpening operations so that a simple thresholding can be used to segment the 

intensified defects in the resulting image.  The method adaptively triggers the 

smoothing process in faultless areas to make the background uniform, and performs 

the sharpening process in defective areas to enhance anomalies.  Experimental 

results from a number of glass substrate samples including backlight panels and LCD 

glass substrates have shown the efficacy of the proposed diffusion scheme in 

low-contrast surface inspection. 

Key words: Defect detection, Surface inspection, Anisotropic diffusion, Low-contrast 

images, Glass substrates 
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 1. Introduction 

Surface inspection is an important part of quality control in manufacturing.  

The manual activity of inspection can be subjective and highly dependent on the 

experiences of human inspectors.  In recent years, image analysis techniques have 

been increasingly used in industry for surface defect inspection, in which one has to 

detect small defects that appear as local anomalies in material surfaces.  In this paper, 

we consider the task of automated visual inspection in low-contrast surfaces, and 

especially focus on the glass substrates used for Thin Film Transistor-Liquid Crystal 

Displays (TFT-LCDs).  The inspection of defects in such panel surfaces ensures the 

display quality and improves the yield in LCD manufacturing.  In the sensed image 

of a glass substrate, the gray levels of defects and background are hardly 

distinguishable and result in a low-contrast image.  Therefore, simple surface 

inspection methods such as thresholding and edge detection are difficult to detect 

subtle defects in low-contrast glass substrate images. 

Many defect detection systems aim at uniform surface images such as glass 

panels [1], sheet steel [2], aluminum strips [3] and web materials [4] using simple 

thresholding or edge detection techniques.  Defects in these uniform images can be 

easily detected because commonly used measures usually have very distinct values.  

The surfaces of glass substrates are also a class of uniform images, but with 

low-contrast intensities.  The main low-contrast glass substrates studied in this paper 

include backlight panels and LCD glass substrates.  Figure 1 presents two types of 

such glass substrates used for LCD modules.  Figure 1(a1) shows a faultless 

backlight panel surface, and Figure 1(b1) shows a defective version of the panel.  

* Manuscript
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Figures 1(c1) and (d1), respectively, present a faultless and a defective LCD panel 

surfaces.  It can be seen from Figures 1(b1) and (d1) that the defects are difficult to 

be found in the uniform background with low-contrast intensities.  In order to 

visualize the subtle defects, gray values of glass substrate images are stretched 

between 0 and 255 for an 8-bit display.  Figures 1(a2)-(d2) show the 

contrast-stretched images of Figures 1(a1)-(d1), respectively.  The stretched 

glass-substrate images of Figures 1(b2) and (d2) show the defects clearly, but they 

also present the background texture and non-uniform illumination.  Hence, to detect 

defects in such stretched images, we may need complicated texture analysis 

techniques rather than the simple thresholding method.  Figures 1(a3)-(d3) illustrate 

the gradient images of Figures 1(a1)-(d1), respectively.  These resulting images 

reveal that the characteristic of a low-contrast surface image invalidates the use of 

gradient magnitude to identify local anomalies. 

In low-contrast surface images, a local defect has a smooth change of brightness 

from its neighboring region and, therefore, provides no clear edges to apply the 

gradient-based methods for defect detection.  The non-uniform intensity of a 

faultless region and the low-contrast intensity of a defective region also deter the use 

of simple thresholding methods.  It is extremely difficult to reliably identify small 

defects in low-contrast surface images without false detection of noise.  Little 

research has been done on defect detection in low-contrast images.  Ngan et al. [5] 

developed an automated vision system for patterned fabrics and repetitive patterned 

textures.  Their system combined wavelet transform and golden image subtraction to 

detect small-size and low-contrast defects.  The method requires a golden image for 

reference, so the detection performance is affected by environmental changes.    

Lee and Yoo [6] presented a complicated data fitting approach for detecting regional 
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defects of brightness unevenness in LCD panel surfaces.  They first estimated the 

background surface of an inspection image using a low-order polynomial data fitting.  

Subtraction of the estimated background surface from the original image was then 

applied to find the threshold for binary segmentation.  The resulting image was then 

post-processed by median filtering, morphological closing and opening to remove 

noise and refine the segmentation.  The proposed method worked successfully to 

detect regional defects in low-contrast, non-textured TFT-LCD surface images.  

However, it is very computationally intensive because the background surface must 

be estimated recursively by eliminating one pixel at a time throughout the entire 

inspection image. 

In this paper, we propose an anisotropic diffusion scheme to tackle the problem 

of defect inspection in low-contrast glass substrate images.  Anisotropic diffusion 

was first proposed by Perona and Malik [7] for scale-space description of images and 

edge detection.  It has been widely used as an adaptive edge-preserving smoothing 

technique for edge detection [8, 9], image restoration [10, 11], image smoothing [12, 

13], image segmentation [14, 15] and texture segmentation [16]. 

The anisotropic diffusion approach is basically a modification of the linear 

diffusion (or heat equation), and the continuous anisotropic diffusion is given by  
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where ),( yxtI  refers to the image at time t, div the divergence operator, ),( yxtI∇

the gradient of the image, and ),( yxtc  the diffusion coefficient.  If ),( yxtc  is a 
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constant, equation (1) is reduced to the isotropic diffusion equation.  It is then 

equivalent to convolving with a Gaussian function.  The idea of anisotropic diffusion 

is to adaptively choose tc  such that intra-regions become smooth while edges of 

inter-regions are preserved.  The diffusion coefficient tc  is generally selected to be 

a nonnegative function of gradient magnitude so that small variations in intensity such 

as noise or shading can be well smoothed, and edges with large intensity transition are 

retained. 

 You et al. [17] gave an in-depth analysis of the behavior of the Perona-Malik 

anisotropic diffusion model (P-M model) by considering the anisotropic diffusion as 

the steepest descent method for solving an energy minimization problem.  Barash 

[18] addressed the fundamental relationship between anisotropic diffusion and 

adaptive smoothing.  He showed that an iteration of adaptive smoothing 
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is an implementation of the discrete version of the anisotropic diffusion equation if 

the weight tw  in eq. (2) is taken as the same of the diffusion coefficient tc  in eq. 

(1).  Gilboa et al. [19] proposed a forward and backward (FAB) adaptive diffusion 

process to enhance edge and smooth noise in the image.  The FAB diffusion model 

involves four ad hoc parameters, of which two critical threshold values of gradient 

must be manually and carefully chosen for the success of the diffusion result.  The 

smaller threshold value determines the use of a forward function, while the larger 

threshold value determines the use of a backward function.  A discontinuous 
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diffusion function is, therefore, applied since nothing is done for the gradient 

magnitude between the two threshold values. 

The conventional diffusion model can effectively perform adaptive smoothing 

for intra-regions in an image. However, it can only passively stop the diffusion 

process to preserve original gray values of edges in inter-regions.  For defect 

detection in a low-contrast image, the conventional diffusion model can only smooth 

the faultless background, but can not enhance the low-contrast defects.  The diffused 

result may still be a low-contrast image.  In this paper, we propose an improved 

anisotropic diffusion model that aims to enhance the gray-level difference between 

local anomalies and the background to detect defects in low-contrast glass substrate 

images.  The proposed method automatically activates a smoothing process in 

faultless regions to make the background uniform, and performs a sharpening process 

in defective regions to enhance anomalies.  The proposed method presents a unified 

continuous diffusion coefficient function that can adaptively carry out smoothing or 

sharpening operation with only two parameters for defect detection in low-contrast 

Images.  It can distinctly enhance low-contrast defects and uniformly smooth the 

background without intensifying textured patterns and uneven illumination so that a 

simple binary thresholding can be effectively and efficiently applied to segment 

defects in the diffused image. 

This paper is organized as follows.  In section 2, we first review the 

Perona-Malik anisotropic diffusion equation, and then discuss the improved diffusion 

model that adaptively performs the smoothing and sharpening operations.  Section 3 

presents the experimental results from a variety of backlight panel and LCD glass 

substrate surfaces that contain various defects.  The effect of varying diffusion 



6

parameter values is also analyzed.  Finally, section 4 gives a brief conclusion of our 

research. 

2. The improved anisotropic diffusion model 

2.1 Perona-Malik anisotropic diffusion model  

 Let ),( yxtI  be the gray level at coordinates ),( yx  of a digital image at 

iteration t, and ),(0 yxI  the original input image.  The continuous anisotropic 

diffusion in eq. (1) can be discretely implemented by using four nearest neighbors and 

the Laplacian operator [7]: 
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where ),( yxi
tI∇ , i = 1, 2, 3 and 4, represent the gradients of four neighbors in the 

north, south, east and west directions, respectively, i.e., 

),()1,(),(1 yxyxyx tt tIII −−=∇
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and ),( yxi
tc  is the diffusion coefficient associated with ),( yxi

tI∇ .  In the P-M 
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model, ),(
i

t yxc  is considered as a function of the gradient ),( yxi
tI∇ , i.e.,  
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For the sake of simplicity, ),( yxi
tI∇  is subsequently denoted by I∇ . The function 

)( I∇g  has to be a nonnegative, monotonically decreasing function with 1)0( =g

and 0)( =∇
∞→∇

Iglim
I

.  The function )( I∇g  should result in low coefficient values 

at high-gradient edges to preserve the gray levels of edges, and high coefficient values 

for low-gradient pixels within an image region so that the region can be smoothed.  

In the P-M anisotropic diffusion model, a possible diffusion coefficient function is 

given by 

                          ])(1[1)( 2KII ∇+=∇g                     (4) 

where the parameter K  is a constant, and acts as an edge strength threshold. 

Parameter K  in the diffusion coefficient function must be fine-tuned for a 

particular application.  If the K  value is too large, the diffusion process will 

oversmooth and result in a blurred image.  In contrast, if the K  value is too small, 

the diffusion process will stop smoothing in early iterations and yield a restored image 

similar to the original one. 

Let )( I∇φ  be a flux function [7] defined as  
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                          III ∇⋅∇=∇ )()( gφ                         (5) 

A large flux value indicates a strong effect of smoothness.  Figures 2 and 3 depict the 

diffusion coefficient function and the flux function in eqs. (4) and (5), respectively.  

For a given K  value, it can be seen from Figure 2 that the diffusion coefficient 

function in eq. (4) drops dramatically and approximates to zero when the gradient 

magnitude I∇  is larger than K4 .  That is, the diffusion stops as soon as 

K4I >∇ .  The maximum smoothness occurs at K1=∇I , as shown in the 

corresponding flux function in Figure 3.  The classical P-M model can effectively 

smooth intra-regions in an image.  However, it can only stop the diffusion process to 

preserve the original gray values of edges in inter-regions.  In a low-contrast image, 

the P-M model can smooth the faultless background but can not distinctly enhance 

subtle defects.  Therefore, the diffusion result may still be a low-contrast image and 

defects cannot be reliably identified in the diffused image.  Figures 4(a1) and (b1) 

present a faultless and a defective backlight panels, and Figures 4(a2) and (b2) are the 

respective contrast-stretched images.  Figures 4(a3) and (b3) show the restoration 

results after 30 iterations of the diffusing process using the P-M model with a properly 

selected parameter value =K 1.  It can be found from the figure that the faultless 

area is uniform, but the defects remain invisible in the diffused image.  This 

indicates that the traditional P-M model can not sufficiently enhance hardly-visible 

anomalies by simply smoothing low-gradient regions and passively preserving 

high-gradient edges.  It is not an acceptable result for low-contrast glass substrate 

inspection. 
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2.2 The proposed anisotropic diffusion model 

In this study, the objective is to detect subtle defects in low-contrast surface 

images.  Observing the backlight panel images in Figures 1(b1) and 4(b1), we found 

the gray levels of defects and the faultless background are hardly distinguishable.  In 

order to enhance the subtle defects effectively in a low-contrast image, we incorporate 

the sharpening process in the classical diffusion model.  The proposed diffusion 

model not only provides different degrees of smoothing for intra-regions but also 

actively provides different degrees of sharpening for edges in inter-regions.  The new 

diffusion model proposed in this study is given by    
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The proposed diffusion model in eq. (6) unifies both the smoothing and sharpening 

processes in one single equation.  The diffusion and sharpening strengths are 

adaptively adjusted by the diffusion coefficient function g  and the sharpening 

coefficient function v .  The second term on the right hand side of eq. (6) is the same 

classical diffusion process as the P-M model in eq. (3), and the third term is 

interpreted as the sharpening operation.  In the proposed diffusion model of eq. (6), 

the sharpening coefficient function )( I∇v  has to be a nonnegative monotonically 

increasing function with 0)0( =v  and 1)( =∇
∞→∇

Ivlim
I

.  This function )( I∇v

should result in high coefficient values at edges that have relatively high gradient 

magnitudes so that they can be distinctly enhanced.  It must generate low coefficient 

values for pixels within image regions that have low gradient magnitudes to inhibit 
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the sharpening process.  In this study, the sharpening coefficient function )( I∇v  is 

defined as 

                           )](1[)( II ∇−⋅=∇ gv α                      (7) 

where α  is the weight of sharpening coefficient function with 10 ≤≤ α .  This 

weighting factor determines the degree of sharpening with respect to the diffusion 

coefficient.  The diffusion coefficient function )( I∇g  is the same as that defined in 

eq. (4).  Note that the value of )( I∇g  ranges between 0 and 1.  Eq. (6) can be 

reformulated as 
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Then )()( II ∇−∇ vg  is the new diffusion coefficient function in the proposed 

diffusion model.  Figures 5 and 6, respectively, depict the diffusion coefficient 

function )()( II ∇−∇ vg  and the flux function IIII ∇⋅∇−∇=∇ )]()([)( vgφ  for the 

proposed diffusion model.  For given α  and K  values, it can be seen from Figure 

5 that the diffusion coefficient function )()( II ∇−∇ vg  drops dramatically and 

shows a zero-crossing when the gradient magnitude I∇  is larger than αK .  In 

the flux function of the P-M model as shown in Fig. 3, the flow increases with the 

gradient strength to a peak and then slowly decreases to zero.  This behavior implies 

that the diffusion process of the P-M model performs heavy smoothing for lower 

gradient areas (such as the uniform background) and carries out light smoothing (or 

stops the smoothing) for higher gradient areas (such as defects).  Since the diffusion 

coefficient can only have a minimum value approximate to zero, the P-M model can 
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only passively preserve the original gray-levels of edges.  It cannot aggressively 

enhance the edges of a defect to intensify the gray-level difference from the smoothed 

background.  In contrast, the flux function of the proposed diffusion model in Figure 

6 shows that the flow increases with the gradient strength to reach a maximum.  It 

then decreases and crosses zero to negative values.  This behavior indicates that the 

diffusion process performs smoothing for lower gradient areas (when αK<∇I )

and proceeds sharpening for higher gradient area (when αK>∇I ).  When the 

diffusion coefficient becomes negative, the proposed diffusion model then actively 

performs the sharpening process.  For defect detection in a low-contrast image, the 

model can effectively enhance defects in the diffused image. 

As demonstrated in Figures 5 and 6 with 1.0=α , the plots indicate that the 

proposed diffusion model will provide the smoothing process when K16.3<∇I ,

and carry out the sharpening process when K16.3>∇I .  From the corresponding 

flux function in Figure 6, it shows that the maximum smoothness is at K1=∇I .

The sharpness strength is proportional to the gradient magnitude when K16.3>∇I .

In a low-contrast backlight panel, the gradient of a faultless background area is 

slightly smaller than that of the defective area.  Therefore, if we can select 

appropriate parameter values for α  and K , the gradient of a faultless background 

area will fall in region A (i.e., K16.3<∇I ) as marked in Figure 6.  Then the 

proposed diffusion model will carry out the smoothing process to make the 

background area uniform.  Conversely, the gradient of a defective area will be 

located in region B (i.e., K16.3>∇I ) as shown in Figure 6, and the diffusion model 
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will perform the sharpening process to enhance edges in the defective area.  The 

proposed diffusion model can automatically and adaptively trigger the smoothing or 

sharpening process based on the variations of gradient in the image with properly 

selected parameter values α  and K .  The resulting diffusion image of an 

inspection surface will have a uniform background for the faultless region and distinct 

gray levels for the defective region.  A simple thresholding can thus be applied to 

segment defects in the diffused image. 

In order to explain the difference between the proposed diffusion model and the 

traditional P-M model, assume that the values of KI∇  in the faultless background 

and the defective area are 2 and 4, respectively.  Note that when 1.0=α , the 

zero-crossing point occurs at K16.3=∇I  in Figure 6.  Comparing the flux 

functions in Figure 3 (the P-M model) and Figure 6 (the proposed model), the P-M 

model will generate a flux value of 0.4 in the faultless background area, but it gives a 

flux value of 0.24 in the defective area.  This indicates that the P-M model carries 

out the smoothing process in both the faultless background and defective area with 

different diffusion strengths.  In this case, both the faultless background area and the 

subtle defect are filtered out by the traditional P-M model.  Conversely, the proposed 

diffusion model will generate a flux value of 0.24 in the faultless background area and 

-0.14 in the defective area.  The positive flux value causes a smoothing process in 

the faultless background area and the negative flux value results in a sharpening 

process in the defective area.  It can simultaneously smooth the faultless background 

area and enhance the subtle defect in an inspection image. 

Since the parameters α  and K  of the proposed diffusion model in eq. (6) 
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must be fine-tuned for different applications, the following experiments are performed 

to determine the suitable values of α  and K  for defect detection in low-contrast 

surface images.  Figure 7 shows the diffusion results of the test image of the 

defective backlight panel in Figure 1(b1) under various combinations of α  and K

values.  The number of iterations is set to 30 for the test image.  When the weight 

α  is too small (i.e., the sharpening process in eq. (6) is inhibited), the defective 

region cannot be enhanced in the resulting diffusion image, as seen in Figures 7(a)-(f) 

with 0=α  or 1.0=α .  Note that the diffusion results of Figures 7(a)-(c) with 

α =0 are equivalent to those from the P-M model.  In contrast, when α  is too large, 

the diffusion result in Figure 7(j) with 3.0=α  shows that the proposed diffusion 

model will over-sharpen the image.  When the diffusion parameter K  is overly 

large with respect to a given α  value, the resulting images are severely smoothed.  

The background area of the test image in Figure 1 (b1) is smoothed, but the shape of 

the defect is also lost, as seen in Figures 7(c), (f), (i) and (l) with a large K  value of 

2.  When the parameter K  is overly small and α  is too large, the results in 

Figures 7(g) and (j) show that the diffusion process generates many false sharpened 

objects and noise.  Figure 7(h) shows a good diffusion result that enhances the 

hardly-visible defect and removes noise in the resulting image.  Thus, 2.0=α  and 

1=K  are suitable values to use for low-contrast backlight panel inspection.  Since 

the surface structure of LCD glass substrates is different from backlight panels (see 

the contrast-stretched images in Figures 1(a2)-(d2)), we need another combination of 

α  and K  values for LCD glass substrate inspection.  With the similar experiments, 

we found that the suitable combination for LCD glass substrate inspection is 2.0=α

and 2=K .  As a general guideline, a larger K  value is recommended for 

less-uniform or complicated surfaces.  This is because that the faultless background 

area in those images usually has larger gradient magnitude.  An α  value of 0.2 has 
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generally performed well for enhancing local anomalies in a low-contrast image. 

3. Experimental results 

 In this section, we present experimental results from a number of backlight 

panels and LCD glass substrates containing various low-contrast defects in images.  

The algorithm was implemented on a Pentium 4, 3G Hz personal computer using the 

Visual Basic language.  The images were 200200 ×  pixels wide with 8-bit gray 

levels.  The number of iterations was 30 for all test images in the experiments.  

Computation time of 30 iterations on a 200200×  image was 0.3 seconds. 

Although a general guideline for the parameter settings of K  and α  has been 

given in section 2, we further provide practical selection rules of parameter values of 

K  and α  in the experiment.  Given a low-contrast glass substrate image that 

contains anomalies, we can generally expect that the average gradient magnitude of 

the defective region is larger than that of a faultless region, and the overall mean 

gradient magnitude of the whole image is somewhere in between.  If we set the 

parameter K  to the mean gradient magnitude of the whole image, then the diffusion 

process will perform smoothing for faultless regions (lower gradient areas), and carry 

out sharpening for defective regions (higher gradient areas) simultaneously.  

Therefore, we can select the parameter K  based on the mean gradient magnitude of 

the whole image.  The mean gradient magnitude I∇  for an image of size NM ×

is defined as 
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In this paper, the parameter K  is given by the nearest integer of I∇ , i.e., 

)5.0(Int +∇= IK .  A thorough experiment from a variety of low-contrast glass 

substrate images has shown that the selected K  works successfully for the defect 

detection application. 

The parameter α  is the sharpening weight factor with 10 ≤≤ α  in eq. (7).  

When α  is set to zero, the proposed method is equivalent to the traditional P-M 

model that simply carries out adaptive smoothing.  Merely smoothing faultless and 

noisy regions without sharpening defective areas cannot effectively enhance 

low-contrast anomalies on the inspection surface.  Figure 8 shows the plots of four 

diffusion coefficient functions with 0.3,1.0,05.0=α and 0.5, in which the four 

corresponding zero-crossing points occur at KKK 1.82,3.16,47.4=∇I and K1.41 ,

respectively.  In low-contrast surface images, the average gradient magnitude of the 

defective region is between 2 and 3 times that of the whole image.  If we set α  to 

an excessively large value (e.g., α =0.5), then the proposed diffusion model will 

perform sharpening in early diffusion iterations and enhance both anomalies and 

details in the faultless area.  In contrast, if α  is set to an overly small value (e.g., 

α =0.05), then the proposed diffusion model carries out the sharpening operation  

too late and the defective area cannot be sufficiently enhanced.  Therefore, it is 

suggested to use an α  value between 0.1 and 0.3.   

The selection guidelines of K  and α  have been applied to test samples of 

backlight panel surfaces, LCD glass substrates and LCD panel surface images, as 

shown in Figures 9, 10 and 11.  The mean gradient magnitudes I∇  for the test 

images in Figures 9, 10 and 11 are ranged between 1.22~1.41, 1.52~1.91 and 
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0.69~0.75, respectively.  The selected values of parameter K  based on eq. (9) has 

been applied successfully for each test image in the experiment.  The experimental 

results demonstrated that the selection rules of K  and α  can be applied 

successfully to all low-contrast surface images.  The details of experimental results 

are discussed as follows. 

The test images in Figures 9(a1)-(e1) present one faultless and four defective 

backlight panel images.  The values of parameters α  and K  were set to fixed 

values of 0.2 and 1, respectively, based on the parameter selection rules above.  

Figures 9(a2)-(e2) present, respectively, the contrast-stretched images of Figures 

9(a1)-(e1) so that the defect locations and shapes can be visibly observed.  The 

results from the proposed diffusion model are shown in Figures 9(a3)-(e3).  It can be 

seen that the shapes of defects are effectively highlighted in the diffused images.  In 

order to segment defects in the diffused image, we use the simple statistical control 

limits to set up the thresholds.  The upper and lower control limits for intensity 

variation in the diffused image are given by 

dd Sσμ ±

where dμ  and dσ  are the mean and standard deviation of gray values in the whole 

diffused image, and S  is a control constant.  In the diffused image, if the gray level 

of a pixel falls within the control limits, the pixel is classified as a faultless point.  

Otherwise, it is classified as a defective one.  In this study, the control constant S =3 

is used for all test samples to follow the 3-sigma standard.  Figures 9(a4)-(e4) 

illustrate the simple thresholding results of the diffused images in Figures 9(a3)-(e3) 

as binary images.  The results reveal that the resulting image of the faultless 
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backlight panel surface is uniformly white, and the defects in all four defective 

surfaces are correctly segmented in the binarized images.   

Figure 10 demonstrates further the detection results of LCD glass substrate 

images.  The parameter values of α  and K  are respectively set to 0.2 and 2.  

Figure 10(a1) is a clear LCD image, and Figures 10(b1)-(e1) are four defective LCD 

images.  It can be seen from the contrast-stretched images in Figures 10(a2)-(e2) that 

the LCD glass substrates contain a horizontal structural pattern with uneven lighting 

on the surfaces.  The results from the proposed diffusion model are presented in 

Figures 10(a3)-(e3), which show that the irregular background is well smoothed and 

the defects are distinctly enhanced.  Figures 10(a4)-(e4) show the thresholding 

results of the diffused images in Figures 10(a3)-(e3) using the 3-sigma control limits.  

The results also reveal that all local defects embedded in low-contrast surface images 

are effectively detected, and the resulting image of the clear surface image is 

uniformly white.  The experiments have shown that the proposed diffusion scheme 

performs well in detecting subtle defects in low-contrast glass substrate images. 

Figure 11 presents two additional LCD panel samples to demonstrate the effect 

of the two selected parameters K  and α .  Figures 11(a1) and (b1) show, 

respectively, a faultless image and a defective image with a blob-mura (brightness 

unevenness).  Figures 11(a2) and (b2) illustrate the diffusion results with α =0.2 and 

K =1.  The thresholding results are presented in Figures 11(a3) and (b3).  The 

detection results show that the selected values of K  and α  based on the previous 

selection guidelines are well suited for defect inspection of low-contrast surface 

images. 
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In order to demonstrate the superiority of using the proposed diffusion model for 

detecting defects in low-contrast glass substrate surfaces, Figures 12 and 13 compare 

the detection results of various filtering methods.  Specifically, Laplacian sharpening 

filter, Sobel edge detection, bilateral filtering, the P-M diffusion model and the 

proposed diffusion model are used for comparison.  Bilateral filtering [18, 20] is a 

newly developed edge-preserving smoothing technique that extends the concept of 

Gaussian smoothing by weighting the filter coefficients with their corresponding 

relative pixel intensities.  Figures 12(a1) and 13(a1) are respectively the faultless and 

defective backlight panel surfaces used for evaluation.  Figures 12(a2)-(a6) and 

13(a2)-(a6) show the resulting diffusion images for Figures 12(a1) and 13(a1) from 

Laplacian, Sobel, bilateral filtering, P-M model and the proposed method, 

respectively.  The corresponding thresholding results using 3-sigma control limits 

for the test images in Figures 12(a1)-(a6) and Figures 13(a1)-(a6) are illustrated in 

Figures 12(b1)-(b6) and 13(b1)-(b6).  The resulting binary images in Figures 

12(b2)-(b5) and 13(b2)-(b5) show that the Laplacian filtering, Sobel edge detection 

and bilateral filtering yield numerous noisy points in both faultless and defective test 

images, and the P-M model performs poorly because the anomalies in the defective 

images were severely smoothed.  In contrast, as seen in Figures 12(b6) and 13(b6), 

the detection results from the proposed method show a uniformly white image for the 

faultless surface, while present the anomaly as an intensified region for the defective 

surface.  Thus, the presenting diffusion process is essential for effective detection of 

small defects in low-contrast glass substrates. 

To further demonstrate the usefulness of the proposed method, we also applied 

both the proposed diffusion model and the P-M diffusion model for defect detection in 

textured images.  Figure 14 presents two additional textile fabric images, in which 
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Figure 14(a1) is a faultless fabric surface, and Figure 14(b1) is a defective one.  The 

results from the traditional P-M diffusion model with varying values of K  are 

shown in Figures 14(a2)-(a4) and 14(b2)-(b4).  The resulting images of the proposed 

method with α =0.2 and K =8 are presented in Figures 14(a5) and (b5).  The 

number of iterations is set to 30 for both methods.  In the P-M diffusion model, a 

small value of K  (e.g., K =2) provides only minor smoothing effect and, therefore,  

the detailed background texture still remains in the filter image, as seen in Figures 

14(a2) and (b2).  By setting the parameter K  with a large value (e.g., K =8), the 

P-M diffusion model oversmoothes both the texture background and local anomalies.  

The resulting defect region, as seen in Figures 14(a4) and (b4), are severely blurred.  

When a suitable K  value (i.e., K =4) is selected, the P-M diffusion model performs 

adaptive smoothing well.  However, it can only filter out the structure texture, but 

cannot effectively enhance edges of the anomaly.  This results in a blurred defect in 

the low-contrast uniform image, as seen in Figure 14(b3).  Figures 14(a5) and (b5) 

show the results of the proposed method.  They reveal that the proposed diffusion 

model not only smooth the texture surface as a uniform region but also distinctly 

enhance the local defect in the diffused images. 

4. Conclusions 

Detecting small defects which appear as local anomalies embedded in a 

homogeneous surface is a common problem in automated surface inspection in 

industry.  The defects under inspection in this study are generally small in size and 

have no distinct intensity variations from their surrounding regions.  Therefore, 

simple thresholding and gradient-based methods cannot be used to reliably identify 

such defects in low-contrast surface images.  In this study, we have proposed an 
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improved version of anisotropic diffusion for detecting defects in glass substrate 

surfaces that involve low-contrast intensities in images. 

Since the defects in low-contrast glass substrate surfaces are hardly visible, it 

makes the defect detection task extremely difficult.  The traditional P-M diffusion 

model can effectively perform the smoothing process for the faultless background in 

an image.  However, it can only passively stop the smoothing process to preserve 

original gray values of subtle defects.  In order to enhance low-contrast defects, the 

sharpening process is incorporated in the proposed diffusion model.  For given 

parameter values of α  and K , the proposed diffusion model can automatically and 

adaptively perform the smoothing or sharpening process in an image according to the 

local gradient magnitudes.  It can effectively filter out the background noise in a 

faultless region, and yet well sharpen the anomalies in the diffused image.  The 

diffused image of an inspection surface will have a uniform background for the 

faultless region and distinct gray levels for the defective region.  A simple 

thresholding is thus easily applied to segment defects in the diffused image. 

Experimental results from the backlight panels and LCD glass substrates have 

shown that the proposed anisotropic diffusion scheme can effectively detect small 

defects in low-contrast glass substrate surfaces. Although the proposed method in this 

paper mainly aims at defect detection in low-contrast surface images, it is believed 

that it can also be extended for image restoration in general. By choosing the suitable 

parameter values of α  and K , the proposed method can filter out noise and 

enhance the target object in the diffused image. In this study, the parameters of the 

proposed diffusion model must be fine-tuned for a specific application. The selection 

rules for parameter settings have been proposed in the experiment, and have worked 
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successfully for defect detection in various low-contrast surface images. Automatic 

parameter value setting based on the intensity characteristics and image content for 

more generic applications in image restoration is currently under investigation. 
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(a1) (a2) (a3) 

(b1) (b2) (b2) 

(c1) (c2) (c3) 

(d1) (d2) (d3) 

Figure 1. Surface images of glass substrates with low-contrast intensities: (a1), (b1) 

faultless and defective backlight panel images; (c1), (d1) faultless and 

defective LCD glass substrate images; (a2)-(d2) contrast-stretched images 

of (a1)-(d1), respectively; (a3)-(d3) respective gradient images of (a1)-(d1). 
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Figure 2. Graph of the diffusion coefficient function: ])(1[1)( 2KII ∇+=∇g .
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Figure 3. Graph of the flux function: { } III ∇⋅∇+=∇ ])(1[1)( 2Kφ .
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(a1) (a2) (a3) 

(b1) (b2) (b3) 

Figure 4. Diffusion results of the backlight panels using the P-M model: (a1) faultless 

image; (b1) defective image; (a2), (b2) contrast-stretched images of (a1) 

and (b1), respectively; (a3), (b3) respective diffused images of (a1) and 

(b1).  
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Figure 5. Graph of the diffusion coefficient function: )()( II ∇−∇ vg  with 1.0=α .

0 1 2 3 4 5

-0.5

-0.3

-0.1

0.1

0.3

0.5

Figure 6. Graph of the flux function: IIII ∇⋅∇−∇=∇ )]()([)( vgφ  with 1.0=α .

KI∇

)( I∇φ

Region B 

(Sharpening) 

Region A 

(Smoothing) 

K16.3=∇I

K16.3=∇I

)()( II ∇−∇ vg

KI∇



28 

(a) α =0,K =0.5 (b) α =0,K =1 (c) α =0,K =2 

(d) α =0.1,K =0.5 (e) α =0.1,K =1 (f) α =0.1,K =2 

(g) α =0.2,K =0.5 (h) α =0.2,K =1 (i) α =0.2,K =2 

(j) α =0.3,K =0.5 (k) α =0.3,K =1 (l) α =0.3,K =2 

Figure 7. Diffusion results of the defective image in Figure 1(b1) under various 

combinations of α  and K . (The number of iterations is set to 30 for all 

tests.) 
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Figure 8. Plots of the diffusion coefficient function )()( II ∇−∇ vg  with 

0.3,1.0,05.0=α and 0.5. 
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(a1) ∇ =1.33 (a2) (a3) (a4) 

(b1) ∇ =1.22 (b2) (b3) (b4) 

(c1) ∇ =1.27 (c2) (c3) (c4) 

(d1) ∇ =1.27 (d2) (d3) (d4) 

(e1) ∇ =1.41 (e2) (e3) (e4) 

Figure 9. Diffusion results of backlight panel surfaces: (a1)-(e1) a faultless and four 

defective test images; (a2)-(e2) contrast-stretched images of (a1)-(e1), 

respectively; (a3)-(e3) respective diffusion results with α = 0.2 and K = 1 

for all samples (number of iterations = 30); (a4)-(e4) thresholding results 

using 3-sigma control limits. ( ∇  is the mean gradient magnitude defined in 

eq. (9).) 
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(a1) ∇ =1.77 (a2) (a3) (a4) 

(b1) ∇ =1.91 (b2) (b3) (b4) 

(c1) ∇ =1.79 (c2) (c3) (c4) 

(d1) ∇ =1.67 (d2) (d3) (d4) 

(e1) ∇ =1.52 (e2) (e3) (e4) 

Figure 10. Diffusion results of LCD glass substrates: (a1)-(e1) a faultless and four 

defective test images; (a2)-(e2) contrast-stretched images of (a1)-(e1), 

respectively; (a3)-(e3) respective diffusion results with α = 0.2 and K = 2 

for all samples (number of iterations = 30); (a4)-(e4) thresholding results 

using 3-sigma control limits. 
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(a1) ∇ =0.75 (a2) (a3)

(b1) ∇ =0.69 (b2) (b3)

Figure 11. Diffusion results of mura samples: (a1)-(b1) faultless and defective test 

images; (a2)-(b2) respective diffusion results with α = 0.2 and K = 1 

(number of iterations = 30); (a3)-(b3) thresholding results using 3-sigma 

control limits. 
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(a1) Original image (a2) Laplacian (a3) Sobel

(a4) Bilateral filtering (a5) P-M model (a6) Proposed method

(b1) (b2) (b3) 

(b4) (b5) (b6) 

Figure 12. Comparison of various filtering methods for a faultless backlight panel 

sample: (a1) original image; (a2) result from Laplacian sharpening filter; 

(a3) result from Sobel edge detection; (a4) result from bilateral filtering; 

(a5) result from the P-M diffusion model; (a6) result from the proposed 

diffusion method; (b1)-(b6) thresholding results using 3-sigma control 

limits for the images in (a1)-(a6), respectively. 
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(a1) Original image (a2) Laplacian (a3) Sobel 

(a4) Bilateral filtering (a5) P-M model (a6) Proposed method

(b1) (b2) (b3) 

(b4) (b5) (b6) 

Figure 13. Comparison of various filtering methods for a defective backlight panel 

sample: (a1) original image; (a2) result from Laplacian sharpening filter; 

(a3) result from Sobel edge detection; (a4) result from bilateral filtering; 

(a5) result from the P-M diffusion model; (a6) result from the proposed 

diffusion method; (b1)-(b6) thresholding results using 3-sigma control 

limits for the images in (a1)-(a6), respectively. 
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(a1) (b1) 

(a2) P-M model (K =2) (b2) P-M model (K =2) 

(a3) P-M model (K =4) (b3) P-M model (K =4) 

(a4) P-M model (K =8) (b4) P-M model (K =8) 

(a5) Proposed method (b5) Proposed method 

Figure 14. Diffusion results of texture images: (a1)-(b1) faultless and defective textile 

fabric images, respectively; (a2)-(a4) and (b2)-(b4) detection results from 

the P-M diffusion model with K = 2, 4 and 8 for (a1) and (b1), 

respectively; (a5), (b5) detection results from the proposed diffusion model 

with α = 0.2 and K = 8. (Number of iterations = 30 for all test samples.) 
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