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Abstract 

 

Texture analysis techniques are being increasingly used for surface inspection, in 

which small defects that appear as local anomalies in textured surfaces must be 

detected.  Traditional surface inspection methods mainly focus on homogeneous 

textures that contain periodical, repetitive patterns.  In this paper, we study defect 

detection in sputtered glass substrates that involve inhomogeneous textures.  Such 

sputtered surfaces can be found in touch panels and LCDs.  An anisotropic diffusion 

scheme is proposed to detect subtle defects embedded in inhomogeneous textures.  

The proposed anisotropic diffusion model takes a nonnegative decreasing function 

with an annealing gradient threshold as the diffusion coefficient to adaptively adjust 

the significance of edge gradients.  It triggers the smoothing process in faultless 

areas for background texture removal by assigning a large diffusion coefficient value, 

and stops the diffusion process in defective areas to preserve sharp edges of anomalies 

by assigning a small diffusion coefficient value.  Experimental results from a number 

of sputtered glass samples have shown the effectiveness of the proposed anisotropic 

diffusion scheme. 

 

Key words: Anisotropic diffusion; defect detection; inhomogeneous texture; sputtered 

surfaces 
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1. Introduction 

 

Texture analysis techniques in image processing are being increasingly used to 

automate industrial inspection of material surfaces.  In automatic surface inspection, 

one has to solve the problem of detecting small defects that appear as local anomalies 

in textured surfaces.  In this paper, we focus on the problem of surface inspection in 

sputtered glass substrates that involve inhomogeneous textures.  Such sputtered 

surfaces can be easily found in touch panels and liquid crystal displays.  In sputtering 

processes, the coating must adhere well on the surface of the transparent glass or films 

and be free of contamination for the panels to perform to specification. Figure 1 

presents two images of sputtered glass surfaces, of which Figure 1(a) is a faultless 

sputtered surface, and Figure 1(b) is a defective one.  It can be seen from Figure 1(a) 

that the textured surface does not show the repetition, self-similarity property 

everywhere in the image. 

 

The traditional texture analysis techniques for defect detection have been focused 

on homogeneously textured surfaces, in which repetitive, periodical patterns give 

harmonic visual impression in the whole image.  Taking advantage of image 

homogeneity, those techniques generally compute a set of textural features in the 

spatial domain or in the spectral domain, and then search for significant local 

deviations in the feature values using various classifiers such as Bayes [1], maximum 

likelihood [2], Markov random field [3], and neural networks [4].  In spatial-domain 

approaches, the commonly used features are the second-order statistics derived from 

spatial gray-level co-occurrence matrices [5].  They have been successfully applied 

to wood inspection [6], carpet wear assessment [7], and roughness measurement of 

machined surfaces [8].  In spectral-domain approaches, textural features are 
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generally derived from the Fourier transform [9, 10] for fabric defect detection [11, 

12], patterned wafer inspection [13] and roughness classification of castings [14], the 

Gabor transform [15-17] for the inspection of wooden surfaces [18], granite [19], steel 

surfaces [20], textile fabrics [21], and homogeneously structural and statistical 

textures [22], and the wavelet transform [23, 24] for the inspection of industrial 

materials such as LSI wafers [25], woven fabrics [26], and textured surfaces [27]. 

 

Other than feature extraction methods, Tsai and Hsieh [28], and Tsai and Huang 

[29] proposed global approaches based on a 2D Fourier image reconstruction scheme 

for inspecting surface defects in structural and statistical textures.  Their approaches 

first eliminated the frequency components that correspond to the homogeneous 

background texture using a bandreject technique, and then back-transformed the 

Fourier spectrum to a spatial-domain image.  In this way, the periodical, repetitive 

texture patterns can be effectively removed, and only local anomalies will be 

preserved in the reconstructed image.  Khalay [30] proposed a self-reference 

technique for detecting defects embedded in periodical structures that contain only 

horizontal and vertical line patterns.  The repetitive periods of the pattern in both 

horizontal and vertical directions were evaluated by high-resolution spectral 

estimation techniques.  Then a synthetic self-reference image was generated from the 

acquired image itself, and used for comparison with the actual image. 

 

The local feature-extraction and global image-reconstruction approaches 

aforementioned are ideally suited for detecting local variations in homogeneous 

textures, and work successfully for a variety of material surfaces that contain 

periodical, repetitive patterns.  However, they are not directly extensible to the 

inspection of sputtered glass substrates that involve inhomogeneous textures.  
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Observing from Figures 1(a) and (b), we find that the faultless sputtered surface 

presents the self-similarity of textured pattern in some regions, but not in the whole 

image.  The irregular area in the faultless surface image cannot be distinctly 

discriminated from the anomalies in the defective surface image.  This makes the 

detection of defects in inhomogeneous textures extremely difficult. 

 

In this paper, we propose an anisotropic diffusion scheme to tackle the problem 

of defect inspection in sputtered glass substrates that contain inhomogeneous textures.  

Anisotropic diffusion was first proposed by Perona and Malik [31] for scale-space 

description of images and edge detection.  This approach is basically a modification 

of the linear diffusion (or heat equation), and the continuous anisotropic diffusion is 

given by  
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where ),( yxtI  is the image at time t, div the divergence operator, ),( yxtI∇  the 

gradient of the image, and ),( yxtc  the diffusion coefficient.  If ),( yxtc  is a 

constant, equation (1) is then reduced to the isotropic diffusion equation, and is 

equivalent to convolving with a Gaussian.  The idea of anisotropic diffusion is to 

adaptively choose tc  such that intra-regions become smooth while edges of 

inter-regions are preserved.  The diffusion coefficient tc  is generally selected to be 

a nonnegative function of gradient magnitude so that small variations in intensity such 

as noise or shading can be well smoothed, and edges with large intensity transition are 

distinctly retained. 

 

 You et al. [32] gave an in-depth analysis of the behavior of the anisotropic 
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diffusion model of Perona and Malik by considering the anisotropic diffusion as the 

steepest descent method for solving an energy minimization problem.  Barash [33] 

addressed the fundamental relationship between anisotropic diffusion and adaptive 

smoothing.  He showed that an iteration of adaptive smoothing 
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is an implementation of the discrete version of the anisotropic diffusion equation if the 

weight tw  in eq. (2) is taken as the same of the diffusion coefficient tc .  Weickert 

et al. [34] discussed that anisotropic diffusion filtering is performed with explicit 

schemes and tends to be computationally inefficient due to very small time steps.  

They presented a fast semi-implicit scheme, which is a Gaussian algorithm, for 

solving a tridiagonal system of linear equations.  An increase of efficiency by a 

factor of 10 with the proposed scheme was reported in their experiments.  The 

anisotropic diffusion approach has grown to become a useful tool for edge detection 

[35, 36], image enhancement [37, 38], image smoothing [39, 40], image segmentation 

[41, 42] and texture segmentation [43]. 

 

 The problem of defect detection in sputtered glass substrates that contain 

inhomogeneous textures is different from the classical image segmentation that 

mainly involves multiple regions of uniform gray levels or multiple textures of 

homogeneous patterns in one image.  In this paper, we use anisotropic diffusion to 

detect defects in sputtered glass surfaces that contain inhomogeneous textures.  The 

anisotropic diffusion acts as a selective smoothing.  It triggers the smoothing process 

in faultless areas for background texture removal, and stops the diffusion process in 
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defective areas to preserve sharp edges of anomalies.  Two diffusion coefficient 

functions with an adaptive-function parameter are evaluated for the specific 

application of sputtered glass inspection.  The adaptive-function parameter will be 

annealed over time so that the diffusion process will effectively smooth irregular 

background textures, and yet distinctly preserve anomalies in the sputtered glass 

surfaces. 

 

 This paper is organized as follows.  Section 2 first overviews the anisotropic 

diffusion equation of Perona and Malik, and then discusses the proposed anisotropic 

diffusion model that involves a nonlinear diffusion coefficient with annealing 

parameter.  Section 3 presents the experimental results from a variety of sputtered 

glass surfaces that contain various defects.  The effects of different anisotropic 

coefficient functions and annealing parameter functions are also analyzed.  The 

paper is concluded in Section 4. 

 

2. The anisotropic diffusion model for defect detection 

  

 Let ),( yxtI  be the gray level at coordinates ),( yx  of a digital image at 

iteration t, and ),(0 yxI  the original input image.  The continuous anisotropic 

diffusion in eq. (1) can be discretely implemented using four nearest neighbors and 

the Laplacian operator [39] 

 

∑
=

+ ∇⋅+=
4

1
)],(),([

4
1),(),(

i
yxyxyxyx i

t
i
tt1t I  cII                

 

where ),( yxi
tI∇ , i = 1, 2, 3 and 4, represent the gradients of four neighbors in the 

north, south, east and west directions, respectively, i.e 
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),()1,(),(1 yxyxyx tt tIII −−=∇  
),()1,(),(2 yxyxyx tt tIII −+=∇  
),(),1(),(3 yxyxyx tt tIII −+=∇  
),(),1(),(4 yxyxyx tt tIII −−=∇  

 

),( yxi
tc  is the diffusion coefficient associated with ),( yxi

tI∇ , and can be considered 

as a function of the magnitude of gradient ),( yxi
tI∇ , i.e,  
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For the sack of simplicity, ),( yxi
tI∇  is subsequently denoted by I∇ . )( I∇g  has 

to be a nonnegative monotonically decreasing function with 1)0( =g  and 

0)( =∇
∞→∇

Iglim
I

.  The selection of )( I∇g  is to have a low coefficient value at 

image edges of anomalies, and a high coefficient value within image regions so that 

unwanted background textures are thoroughly smoothed and inter-region edges of 

defects are preserved.  Two possible diffusion coefficient functions are 

 

                          ])(exp[)( 2KII ∇−=∇g                    (3) 

and 

                          ])(1[1)( 2KII ∇+=∇g                    (4) 

 

In the anisotripic diffusion model of Perona and Malik [31], the parameter K  is a 

constant, and must be fine-tuned for a particular application.  Parameter K  in the 

diffusion coefficient function acts as an edge strength threshold.  If the K  value is 

an overly small constant in all diffusion iterations, the diffusion will stop in early 

iterations and the background texture cannot be sufficiently smoothed.  This may 
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cause false rejection of a faultless surface in the inspection process.  Reversely, if the 

K  value is a large constant, the diffusion process will oversmooth in early iterations 

and both the background texture and defects will be removed.  This may cause false 

acceptance of a defective surface accordingly.   

 

 Figures 2(a) and (b) depict the diffusion coefficient functions of eqs. (3) and (4), 

respectively.  Let )( I ∇φ  be a flux function defined by [32]  

 
                         III ∇⋅∇=∇ )()( gφ                          (5) 
 

A large flux value indicates a strong effect on smoothness.  Figures 3(a) and (b) give 

the graphs of the flux functions of the respective diffusion coefficient functions in eqs. 

(3) and (4).  For a given K  value, it can be seen from Figure 2 that the diffusion 

coefficient function of eq. (3) drops dramatically and approximates to zero when the 

gradient magnitude I∇  is larger than 2K , i.e., the diffusion stops as soon as 

K2>∇I .  The maximum smoothness occurs at K75.0=∇I  as shown in the 

corresponding flux function.  The diffusion coefficient function of eq. (4), instead, 

decreases more gradually even when K2>∇I .  Its corresponding flux function 

shows that the maximum smoothness is at K1=∇I .  Compared to eq. (4), eq. (3) 

privileges high-contrast edges over low-contrast ones.  In the application of defect 

detection in sputtered glass substrates, diffusion coefficient function of eq. (4) is more 

desirable than that of eq. (3). 

 

 The sputtered glass surfaces involve inhomogeneous textures in nature and some 

faultless regions may contain irregular items.  The diffusion coefficient function of 
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eq. (3) may cause the diffusion process to stop in the early iterations, and the 

background texture will not be sufficiently removed.  Given that the gradient 

threshold K  is a constant, the selection of a best K  value becomes extremely 

crucial.  A large K  value will oversmooth both background textures and defects.  

An overly small K  value disables the diffusion process and the unwanted 

background texture will be preserved.   

 

In order to alleviate the limitations of the use of a constant K , we propose an 

annealing n-th root function for the gradient threshold K .  Its value will be reduced 

as the diffusion iteration increases.  In each diffusion iteration, the gradient 

magnitude (i.e. intensity contrast) of anomalies will be reduced in the filter image.  A 

constant K  will eventually smooth out the defects.  However, as the gradient 

threshold adaptively decreases with the increment of iterations, the diffusion process 

has no effect on the defective regions while it can gradually remove the background 

textures as long as the decrement of gradient magnitude in faultless regions is 

competitive with the decrement of the K  value.  The annealing n-th root function 

used in this study is defined by  

 

                           ntt
1

)0()( −⋅=KK                           (6) 

 

where )(tK  is the gradient threshold at iteration t , )0(K  is the initial value, and n 

is a positive integer.  Figures 4(a)-(d) present the graphs of four root functions with  

n = 1, 2, 3 and 4, respectively.  Note how the shape of the function is affected as the 

value of n is changed.  The graphs show that a small n, such as n = 1, will make the 

K  value drop rapidly and cause the diffusion process to stop at a small number of 

iterations t .  As n increases, the K  value will decrease gradually and result in fast 
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smoothness in a small number of iterations.  An overly large value of n may 

oversmooth both background textures and subtle defects in early iterations.  Figure 

5(a) shows a sputtered glass substrate containing defects on the surface, and Figures 

5(b)-(e) present the diffusion results from the four root functions with n = 1, 2, 3 and 4 

at the iteration numbers t = 50, 100 and 150.  The results in Figures 5(b1)-(b3) 

reveal that the background texture cannot be effectively removed even after 150 

iterations when the annealing root function is given by 1)0()( −⋅= tt KK  (i.e., n = 1).  

When the quadruple root function (i.e., n = 4) is used, the background texture is 

significantly smoothed at a small iteration number of 50, and some details of defects 

are blurred at a large iteration number of 150.  Two additional sample images, one 

containing a black line defect, and the other containing a white scratch defect as 

shown in Figure 6, are used to further evaluate the diffusion effects of varying 

annealing root functions.  The diffusion results consistently reveal that the annealing 

cubic-root function can effectively remove background textures and well preserve 

most of the defect regions.  By considering the objective of background-texture 

removal and defect preservation in the filter image, the annealing cubic-root function  

 

3
1
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is adapted in this study for the application of defect detection in sputtered glass 

surfaces.  The diffusion coefficient function used in this study is therefore given by 
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 Since the gradient threshold value K  is adaptively decreased as the iteration 

number increases, the selection of the initial value )0(K  is not as crucial as that of a 
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constant K  in the Perona and Malik’s model.  Given a sputtered surface image that 

contains anomalies, we can generally expect that the average gradient magnitude of 

the defective region is larger than that of the faultless region, and the average gradient 

magnitude of the whole image is somewhere in between.  As seen in Figure 3(b), the 

flux function of the diffusion coefficient in eq. (4) shows that the maximum 

smoothness is given by K⋅=∇ 1I .  We therefore set the initial value )0(K  of the 

annealing cubic root function to the average gradient magnitude of the whole image 

under inspection, i.e.,  
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where NM ⋅  is the image size.  A thorough experiment from a variety of sputtered 

glass samples has shown that the selected )0(K  works successfully for the defect 

detection application. 

 

3. Experimental results 

 

 In this section, we present experimental results from a number of sputtered glass 

substrates involving various defects.  The algorithms are implemented on a Pentinum 

4, 1.9G personal computer using the VB language.  The image is 200200×  pixels 

wide with 8-bit gray levels.  Since the inspection task is a supervised one, the 

required minimum number of iterations t is selected in advance such that the 

background textures of faultless samples can be sufficiently removed.  Computation 

time of the proposed anisotropic diffusion scheme is linearly proportional to the 

number of iterations.  For instance, computation times of 30 and 100 iterations on a 

200200×  image are 0.45 and 1.32 seconds, respectively. 
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 As seen previously, Figures 1(a) and (b) show respectively a faultless sample and 

a defective sample of sputtered glass surfaces that contain irregular texture structures.  

The diffusion results of these two test samples from the diffusion coefficient functions 

of eqs. (3) and (4) with an annealing cubic-root function are demonstrated in Figures 7 

and 8.  The same initial gradient threshold 5)0( =K  is applied to all experiments of 

the two test samples.  For both the faultless and defective surface samples, the 

diffusion coefficient function of eq. (4) yields an approximately uniform image at 

iteration number 30, and makes the diffusion process steady after iteration number 50.  

However, the diffusion coefficient function of eq. (3) cannot sufficiently remove the 

background texture at iteration number 30, and some noisy blobs remain in the filter 

image even at the iteration number 100, as seen in Figures 7(b2)-(b4) and 8(b2)-7(b4). 

 

 To compare the diffusion effect between an annealing gradient threshold )(tK  

and a constant K , Figures 9 and 10 further present the diffusion results on the two 

test samples in Figures 1(a) and (b) using a large constant 5=K  (the initial value 

)0(K  used in the cubic-root function), and a small constant 1=K  in the diffusion 

coefficient function of eq. (4). It reveals that the large constant 5=K  oversmoothes 

the texture surface, and the resulting defect in Figure 10(a1)-(a4) is severely blurred.  

The small constant 1=K  has only small effect on diffusion, and the detailed 

background texture remains in the filter image even after 100 iterations, as seen in 

Figure 10(b1)-(b4). 

 

In order to identify the defect regions in the final diffused image, the edges of 

anomalies are detected by comparing their gradient magnitude with respect to a 

specific threshold.  Let *t  be the stopping iteration number of diffusion.  ),(* yxtI  
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is then the final diffused image.  The gradient magnitude of a pixel at coordinates 

),( yx  is defined by the average of ),( yxi
t*

I∇ , i = 1, 2, 3, 4, i.e., 
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In the proposed anisotropic diffusion model, the edge gradient I∇  is compared with 

the edge strength threshold )(tK .  Therefore, we simply use )( *tK  as the gradient 

threshold, where 

 

3
1
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When the gradient ),( yx*t
I∇  of a pixel at ),( yx  is larger than the threshold 

)( *tK , pixel ),( yx  is classified as an edge point.  Otherwise, it is a within-region 

pixel.  A long edge segment indicates the evidence of a defect in the sputtered 

surface.  The sample images in Figures 1(a) and (b) are again employed to 

demonstrate the edge detection and thresholding results of defect regions in the final 

diffused image.  Figures 11(a2) and (b2) show the resulting diffusion images at 

iteration number 150, both with 5)0( =K .  Figures 11(a3) and (b3) present the 

detected edges of defect regions as binary images.  Note that Figure 11(a3) contain 

no edges, except for some minor noisy points, for the faultless sputtered surface, and 

Figure 11(b3) involves sizable connected edges of the defect regions for the defective 

sputtered surface.  Figures 11(a4) and (b4) further illustrate the results of 

superimposing the detected edges in Figures 11(a3) and (b3) on the original images.  

The results reveal that the edges of defect regions are well detected and located.     
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Figures 12 further present eight additional test samples of sputtered glass 

surfaces under higher image resolution.  The test images in Figures 12(b1)-(h1) show 

a variety of subtle defects.  Some of them are very narrow in width, and do not show 

high-contrast intensities.  The detection results at iteration number 50 with 4)0( =K  

for all eight test samples show that the proposed anisotropic diffusion scheme 

performs effectively to detect defects in the sputtered glass substrates that contain 

inhomogeneous textures.  The detected edges of defect regions for the eight test 

samples are also illustrated in Figures 12(a3)-(h3).  They are superimposed on the 

original images to show the effectiveness of detection and localization. 

 

In order to verify the necessity of the proposed diffusion process for defect 

detection, Figures 13 and 14 present two pairs of test images used for the comparisons 

among the proposed diffusion method, and two simple smoothing methods of 

Gaussian filtering and median filtering.  Both smoothing filters are of the size 33× , 

and the filtering processes are iteratively repeated for 20 times so that the 

inhomogeneous background can be smoothed.  The same edge detection method is 

applied in the filtered images for all three methods.  The gradient threshold selected 

for each method has such a value that most of the true defects’ edges can be 

effectively identified in the filtered images.   

 

Each pair of the test images in Figure 13 or 14 involves a clear surface and a 

defective one.  The detection results from the three methods are represented by 

superimposing the thresholded edges in the filtered images.  The resulting images in 

Figures 13 and 14 show that the median filtering performs poorly, and the Gaussian 

filtering yields numerous noisy points in both faultless and defective sputtered 

surfaces.  In contrast, the detection results from the proposed diffusion method are 
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relatively clear for the faultless surface, while the anomalies are well detected for the 

defective surfaces.  Therefore, the proposed diffusion process is mandatory for 

effective detection of defects in inhomogeneous sputtered surfaces. 

 

4. Conclusions 

 

 In this paper we have proposed an anisotropic diffusion scheme for detecting 

defects in sputtered glass surfaces that involve inhomogeneous textures.  Since a 

sputtered surface may involve irregularity in faultless areas, it makes the defect 

detection task extremely difficult.  The diffusion coefficient of the anisotropic 

diffusion model used in this study is a nonnegative decreasing function, in which the 

gradient threshold K  is chosen to be an annealing cubic-root function.  The value 

of K  can then adaptively determine the significance of the local gradient as the 

intensity-contrast in the filter image is gradually reduced in increasing number of 

iterations. 

 

 Experimental results have shown that the proposed anisotropic diffusion scheme 

can effectively remove background textures in faultless areas, and yet maintain sharp 

edges of anomalies in the filter image of a sputtered glass surface.  The inherent 

limitation of the anisotropic diffusion model is that the convergence of the diffusion 

process is time-consuming.  An efficient and fast computation version of anisotropic 

diffusion is worth further investigation so that defect detection in sputtered glass 

surfaces can be on-line applied in manufacturing. 

 

The proposed method is directly related to nonlinear edge preserving smoothing 

techniques.  The median filter is a simple non-linear filter that has been used 
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extensively in edge-preserving smoothing.  It does not provide sufficient smoothing 

with sharp-edge preservation, especially when the data is Gaussian in nature [44].  

Markov random field (MRF) based methods [45, 46, 47] have achieved good 

segmentation results on a variety of images.  The MRF-based methods generally 

transform image segmentation problem into an optimization problem.  They require 

fairly accurate knowledge of the prior true image distribution, and most of them are 

quite computationally expensive for the parameter estimation [48].  The proposed 

anisotropic diffusion scheme for defect detection requires only the selection of the 

initial value of the gradient threshold; i.e., )0(K , in the anisotropic diffusion model.  

It will then automatically and effectively smooth out the background texture and 

distinctly preserve anomalies of inhomogeneously textured surfaces in iterations.   
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(a) (b) 

 
Figure 1. Two sputtered surfaces of touch panels: (a) a faultless sample image; (b) a 

defective sample image. 
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(a) 

 

(b) 
 
 

Figure 2. Graphs of two diffusion coefficient functions: (a) ])(exp[)( 2KII ∇−=∇g ; 

(b) ])(1[1)( 2KII ∇+=∇g . 
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(a) 

 

(b) 
 

 
Figure 3. Graphs of two flux functions: (a) III ∇⋅∇−=∇ ])(exp[)( 2Kφ ;         

(b) { } III ∇⋅∇+=∇ ])(1[1)( 2Kφ . 
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Figure 4. Graphs of four root functions ntt
1

)0()( −
⋅=KK  for n=1, 2, 3 and 4, given 

that 5)0( =K . 



 24

    
(a)  

   
(b1) n=1, t=50           (b2) n=1, t=100          (b3) n=1, t=150 

   
(c1) n=2, t=50           (c2) n=2, t=100          (c3) n=2, t=150 

   
(d1) n=3, t=50           (d2) n=3, t=100          (d3) n=3, t=150 

   
(e1) n=4, t=50           (e2) n=4, t=100          (e3) n=4, t=150 

 
Figure 5. (a) A defective sputtered glass image; (b)-(e) the diffusion results from the 

four root functions ntt
1

)0()( −⋅=KK , n=1, 2, 3 and 4 at three iteration 
numbers t=50, 100 and 150, given that 5)0( =K . 
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(a1) (b1) 

  
(a2) n=1 (b2) n=1 

  
(a3) n=2 (b3) n=2 

  
(a4) n=3 (b4) n=3 

  
(a5) n=4 (b5) n=4 

 
Figure 6. Two additional sample images to show the diffusion effects of different root 

functions: (a1)-(b1) two defective sputtered glass images; (a2)-(a5) and 
(b2)-(b5) the diffusion results from the four root functions ntt

1

)0()( −⋅=KK , 
n=1, 2, 3 and 4 at the iteration number t=100, given that 5)0( =K . 
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(a1) t=10 (b1) t=10 

  
(a2) t=30 (b2) t=30 

  
(a3) t=50 (b3) t=50 

  
(a4) t=100 (b4) t=100 

 

Figure 7. The diffusion results of the faultless test image in Figure 1(a) using the 
annealing gradient threshold )(tK : (a1)-(a4) results from the diffusion 

coefficient function ( ) ])(1[1)( 2tg KII ∇+=∇  at iterations t=10, 30, 50 

and 100; (b1)-(b4) results from ( ) ])(exp[)( 2tg KII ∇−=∇  at t=10, 30, 
50 and 100. (Note that 5)0( =K  is used for both functions.) 
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(a1) t=10 (b1) t=10 

  
(a2) t=30 (b2) t=30 

  
(a3) t=50 (b3) t=50 

  
(a4) t=100 (b4) t=100 

 
Figure 8. The diffusion results of the defective test image in Figure 1(b) using the 

annealing gradient threshold )(tK : (a1)-(a4) results from the diffusion 

coefficient function ( ) ])(1[1)( 2tg KII ∇+=∇  at iterations t=10, 30, 50 

and 100; (b1)-(b4) results from ( ) ])(exp[)( 2tg KII ∇−=∇  at t=10, 30, 
50 and 100. ( 5)0( =K  is used for both functions.) 
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(a1) K =5, t=10 (b1) K =1, t=10 

  
(a2) K =5, t=30 (b2) K =1, t=30 

  
(a3) K =5, t=50 (b3) K =1, t=50 

  
(a4) K =5, t=100 (b4) K =1, t=100 

 
Figure 9. The diffusion results of the faultless test image in Figure 1(a) using a 

constant K : (a1)-(a4) results from a large K value of 5 at iterations t=10, 
30, 50 and 100; (b1)-(b4) results from a small K value of 1 at iterations 
t=10, 30, 50 and 100. (Note that the diffusion coefficient function 

])(1[1)( 2KII ∇+=∇g  is used, where 5=K  or 1=K  is applied for 
all iterations.) 
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(a1) K =5, t=10 (b1) K =1, t=10 

  
(a2) K =5, t=30 (b2) K =1, t=30 

  
(a3) K =5, t=50 (b3) K =1, t=50 

  
(a4) K =5, t=100 (b4) K =1, t=100 

 
Figure 10. The diffusion results of the defective test image in Figure 1(b) using a 

constant K : (a1)-(a4) results from a large K value of 5 at iterations t=10, 
30, 50 and 100; (b1)-(b4) results from a small K value of 1 at iterations 
t=10, 30, 50 and 100. (Note that the diffusion coefficient function 

])(1[1)( 2KII ∇+=∇g  is used, where 5=K  or 1=K  is applied for 
all iterations.) 
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(a1) (b1) 

  
(a2) (b2) 

  
(a3) (b3) 

  
(a4) (b4) 

 
Figure 11. Detecting edges of defect regions in the final diffused images: (a1)-(b1) a 

faultless and a defective sputtered glass surface images; (a2)-(b2) 
respective diffusion results at iteration number 150 with 5)0( =K ; 
(a3)-(b3) the detected edges shown as binary images; (a4)-(b4) the results 
of superimposing the detected edges on the original images. 
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(a1) (a2) (a3) 

   
(b1) (b2) (b3) 

   
(c1) (c2) (c3) 

   
(d1) (d2) (d3) 

 
Figure 12. The diffusion results for sputtered glass surfaces under a high image 

resolution: (a1)-(h1) a faultless and seven defective test images; (a2)-(h2) 
the respective diffusion results at iteration t=50 from the diffusion 
coefficient function of eq. (7) with 4)0( =K  for all samples; (a3)-(h3) 
the superimposing results of detected edges of defect regions. 
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(e1) (e2) (e3) 

   
(f1) (f2) (f3) 

   
(g1) (g2) (g3) 

   
(h1) (h2) (h3) 

 
Figure 12. (continued) 

 
 
 
 
 
 



 33

 

  
(a1) (b1) 

  
(a2) (b2) 

  
(a3) (b3) 

  
(a4) (b4) 

 
Figure 13. Comparison of various filtering methods for test samples I: (a1) the 

original image of a clear surface; (b1) the original image of a defective 
surface; (a2)-(b2) detection results of superimposing the thresholded 
edges on the filtered images from the proposed diffusion method; (a3)-(b3) 
detection results from the Gaussian filtering; (a4)-(b4) detection results 
from the median filtering. 
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(a1) (b1) 

  
(a2) (b2) 

  
(a3) (b3) 

  
(a4) (b4) 

 
Figure 14. Comparison of various filtering methods for test samples II: (a1) the 

original image of a clear surface; (b1) the original image of a defective 
surface; (a2)-(b2) detection results from the proposed diffusion method; 
(a3)-(b3) detection results from the Gaussian filtering; (a4)-(b4) detection 
results from the median filtering. 

 


