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An independent component analysis based filter design
for defect detection in low-contrast surface images

Abstract

In this paper, we propose a convolution filtering scheme for detecting small
defects in low-contrast uniform surface images and, especially, focus on the
applications for backlight panels and glass substrates found in Liquid Crystal Display
(LCD) manufacturing. A defect embedded in a low-contrast surface image shows no
distinct intensity from its surrounding region, and even worse, the sensed image may
present uneven brightness on the surface. All these make the defect detection in
low-contrast surface images extremely difficult.

In this study, a constrained ICA (independent component analysis) model is
proposed to design an optimal filter with the objective that the convolution filter will
generate the most representative source intensity of the background surface without
noise. The prior constraint incorporated in the ICA model confines the source values
of all training image patches of a defect-free image within a small interval of control
limits. In the inspection process, the same control parameter used in the constraint is
also applied to set up the thresholds that make impulse responses of all pixels in
faultless regions within the control limits, and those in defective regions outside the
control limits. A stochastic evolutionary computation algorithm, particle swarm
optimization (PSO), is applied to solve for the constrained ICA model. Experimental
results have shown that the proposed method can effectively detect small defects in
low-contrast backlight panels and LCD glass substrate images.

Keyword: Defect detection, Surface inspection, Independent component analysis,
Convolution filter; Particle swarm optimization



1. Introduction

Image analysis techniques are being increasingly used to automate industrial
inspection. The manual activity of inspection could be subjective and highly
dependent on the experience of human personnel. Subtle defects appearing in a
low-contrast surface cannot be visibly identified even with a well-trained inspector.
In automatic surface inspection, small defects which appear as local anomalies
embedded in a homogeneous surface must be reliably detected. This paper considers
the issue of designing a convolution filter for defect detection in low-contrast surface

images using Independent Component Analysis (ICA).

Defect detection in uniform surface images arises in glass plate [1], sheet steel
[2], aluminum strips [3] and web materials [4]. Most of the existing defect detection
methods for uniform surfaces use simple thresholding or edge detection techniques.
Defects in these images can be easily detected because they commonly have distinctly
measured values with respect to those of the uniform background. The inspection task
in the present paper is the detection of subtle defects in uniform surfaces that involve
low-contrast intensities in images. This type of surfaces arises in many industrial
materials. In this paper, we especially aim at backlight panels and glass substrates in

Thin Film Transistor-Liquid Crystal Display (TFT-LCD) manufacturing.

In recent years, there is a great demand for flat-panel displays used as monitors
for notebook and personal computers, and as viewfinders for handheld devices such as
cellular phones and PDAs. TFT-LCDs have become increasingly important as one of
flat panel display devices due to their full-color display capabilities, low power

consumption and light weight. The backlight unit and LCD glass substrate are two

2



important components composing a TFT-LCD module. The inspection of defects in
such panel surfaces ensures the display quality and improves the yield in LCD
manufacturing. Most of the existing machine vision algorithms for defect inspection
in LCD panel surfaces are still mainly based on thresholding, edge detection and
first-order statistics [5] such as mean and variance from the gray-level histogram of an
image. Kim et al. [6] presented an automated inspection algorithm for detecting
spot-type defects in TFT-LCD panels. An adaptive multi-level thresholding method
that uses the statistical characteristics of the local area is applied for adaptive
segmentation of spot-type defects. Saitoh [7] proposed a machine vision system for
the inspection of LCD brightness unevenness. An edge detection algorithm was first
used to detect discontinuous points. A genetic algorithm was then applied to extract
the visual continuous boundary of a non-uniform brightness region for distinguishing
true defects from noise. Jiang et al. [8] used a luminance meter, instead of a CCD
camera, as the sensing device for detecting brightness unevenness in LCD panels.
Analysis of variance (ANOVA) and exponentially weighted moving average
techniques were applied to determine the presence of region-type defects. Sokolov
and Treskunov [9] developed an automatic vision system for final output checks of
LCDs. Their method was mainly based on the brightness distribution of an LCD
image. It compares the average brightness of background between a reference LCD

image and an inspection image to detect the appearance of defects.

In low-contrast surfaces, a local anomaly has smooth change of brightness from
its surrounding region and, therefore, has no clear edges to apply the gradient-based
methods for defect detection. The non-uniform intensity of a faultless region and the
low-contrast intensity of a defective region also deter the use of simple thresholding

methods. It is extremely difficult to reliably identify real defects in low-contrast
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surface images without false detection of noise. Lee and Yoo [10] proposed a
complicated data fitting approach for detecting regional defects of brightness
unevenness. They first estimated the background surface of an inspection image using
a low-order polynomial data fitting. Subtraction of the estimated background surface
from the original image is then applied to find the threshold for binary segmentation.
The resulting image is then post-processed by median filtering, morphological closing
and opening to remove noise and refine the segmentation. The proposed method
worked successfully to detect regional defects in low-contrast TFT-LCD surface
images. However, it is very computationally intensive because the background surface
must be estimated recursively by eliminating one pixel at a time throughout the entire

inspection image.

In this paper, we propose a convolution filtering scheme for defect detection in
low-contrast uniform surface images. The design of the convolution filter is based on
independent component analysis with the goal that the resulting impulse responses are
consistently the same for pixels in faultless regions and distinctly different for pixels
in defective regions. ICA is a novel statistical signal process technique to extract
independent sources given only observed data that are mixtures of the unknown
sources, without any prior knowledge of the mixing mechanisms [11, 12]. The
observed signals are generally assumed to be a linear mixture of the unknown sources
from a mixing matrix which is solved by maximizing the independency of the
estimated source signals. The estimated source signals are termed independent

components (ICs), and the inverse of the mixing matrix is called de-mixing matrix.

ICA has been widely applied in medical signal processing such as EEG, fMRI

and MEG data [13-17], and audio signal processing [18, 19] for the purpose of signal
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de-noising and extraction of meaningful sources for interpretation. It also has been
applied in face recognition [20-23] and texture analysis [24-26] that used either the
estimated independent components or the corresponding column vectors of the mixing
matrix (or row vectors of the de-mixing matrix) as features for classification.
Hyvarinen et al. [27, 28], Hyvarinen [29] and Hung and Luo [30] used ICA for image
denoising. They applied the ICA algorithm and maximum a posteriori (MAP)
estimator in a noise-free training image to find the mixing matrix. The mixing matrix
is then used in a sensed image to obtain the noisy ICs. The shrinkage nonlinearity
function is applied to remove noise in the noisy ICs. The filtered ICs were finally

multiplied with the mixing matrix to restore the image.

In this study, ICA is used to design an optimal filter in the sense that the filter
will generate the most representative source intensity of the background surface
without noise so that all pixels in faultless regions have approximately the same
impulse responses, while the pixels in defective regions have distinct responses in the
filtered image. In an ICA model, independent components and the mixing matrix that
constructs the observed signals can be estimated from the training samples by
maximizing the independency of the estimated sources. Since any training image
patches of the same size as the filter in a faultless surface image can be treated as
translated versions of the same pattern, only one source is needed to be estimated in
this study. The corresponding row vector of the estimated source in the de-mixing
matrix is used as the convolution filter for defect detection in low-contrast uniform

surface images.

An ICA model with a prior constraint is applied to determine the filter so that the

impulse responses of all training image patches are as consistent as possible. The
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constraint incorporated in the ICA model is given by the upper and lower control
limits defined by the mean and standard deviation of the resulting impulse responses
of all image patches used in training. In this study, we propose a stochastic
optimization procedure based on the Particle Swarm Optimization (PSO) algorithm to
effectively determine the de-mixing row vector, i.e. the convolution filter, of the
constrained ICA model. In the inspection process, the same parameter value of the
control limits used as the constraint in the training process is conveniently adopted to
set up the thresholds for segmenting defects from the background surface. The
convolution filter will give an impulse response within the control limits when the
sliding window of the filter spans a regular region in the inspection image, and will
generate a distinct impulse response outside the control limits for a defective region.

This transforms the low image difference into a detectable filter output.

Two types of low-contrast surfaces, backlight panels and glass substrates found
in LCD manufacturing, are the main application targets of the proposed method.
Figures 1(al) and (b1) show, respectively, a faultless backlight panel image and a
defective one. The subtle defect is nearly invisible in the low-contrast image. Figures
1(a2) and (b2) illustrate the respective enhanced images by linearly stretching the
original gray levels in Figures 1(al) and (b1) between 0 and 255 for an 8-bit display.
The subtle defect is now much better visible in the enhanced image of Figure 1(b2).
Owing to the inherent structural pattern on the backlight panel surface, the enhanced
images turn into structurally textured images with uneven illumination. The task of
defect detection in such an enhanced image becomes difficult because it is hard to
distinguish defects from noise in a textured image with non-uniform illumination.
Figures 1(a3) and (b3) present the gradient images of Figures 1(al) and (bl),

respectively. The resulting images reveal that the characteristic of a low-contrast
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surface image invalidates the use of gradient magnitude to identify a defect without

false alarms of noise.

This paper is organized as follows: Section 2 first discusses the convolution
filtering approach for defect detection in uniform surface images. The basic ICA
model is then overviewed. The constrained ICA model used for the design of the
convolution filter is next introduced. The PSO search algorithm that determines the
best filter coefficients from the constrained ICA model is finally presented. Section 3
demonstrates the experimental results from a number of backlight panels and LCD
glass substrates containing various local defects. The impact of the constraint setup in
the ICA model, and the effect of changes in filter size are also evaluated in this section.

The paper is concluded in Section 4.

2. The proposed ICA filtering scheme

2.1 Convolution filtering

In this study, we propose a filtering approach for defect detection in low-contrast
surface images. The advantages of the filtering method for defect inspection are
threefold: 1) its implementation is simple and straightforward in the inspection
process since it involves only simple convolution operations; 2) it takes only one filter
to detect various unanticipated defects in a uniform surface image; 3) it converts the
difficult qualitative measures of ill-defined defects into a simple detectable impulse
response. To fulfill all the benefits of the filtering method in the inspection process, it
relies on the design of an optimal filter with the objective that the impulse responses
of all pixels in defective regions are highly distinct from those in faultless regions in

an image.



Let f(x,y) be the gray level at pixel coordinates (X, y) in an inspection image
of size M x N, and h(i, j) the filter of size mxn. The impulse response r(x,y) at

point (X,y) is given by convolving an image patch of size mxn with the filter, i.e.

3

-1n-1

r(xy)=2 > f(x+i,y+j)-h(j) (1)

i j=0

1l
o

The convolution filter slides over the entire inspection image pixel by pixel so that the
impulse response of every pixel in the image can be evaluated. If the resulting impulse
responses of defective pixels are distinctly different from those of faultless pixels, the
statistical process control principle can be simply used to set up the control limits (i.e.
the thresholds) for distinguishing local anomalies from the uniform background in the
filtered image. The upper and lower control limits for response magnitude variation in

the filtered image are given by
1, Ko, 2)

where x4, and o, are the mean and standard deviation of impulse responses in the

filtered image of size M x N , i.e.

“, =ﬁ§;r(x, y)

. %
O :{mzx‘,zy:[r(x, Y)—ﬂr]z}

K is a control constant, and is generally given by 3 to follow the statistical 3-sigma

standard.



In this study, a constrained version of ICA model is used to determine the best
convolution filter for defect detection in low-contrast surface images. The basic ICA

model is initially overviewed in the following subsection.

2.2 The basic ICA model
In the basic ICA model [12, 31], the observed mixture signals X can be expressed
as
X =AS @)
where A is an unknown mixing matrix; S represents the latent source signals, meaning
that they cannot be directly observed from the mixture signals X. The ICA model
describes how the observed mixture signals X are generated by a process that uses the
mixing matrix A to mix the latent source signals S. The source signals are assumed to
be mutually statistically independent. Based on the assumption, the ICA solution is
obtained in an unsupervised learning process that finds a de-mixing matrix W. The
matrix W is used to transform the observed mixture signals X to yield the independent
signals, i.e. WX =Y. The independent signals Y are used as the estimates of the latent
source signals S. The components of Y, called independent components, are required

to be as mutually independent as possible.

Two preprocessing steps are common in ICA, centering and whitening [12, 20].
First, the input matrix X is centered by subtracting the mean of each columns of X.
The matrix X with zero mean is then passed through the whitening matrix V to

remove the second order dependency. The whitening matrix V is twice the inverse

square root of the covariance matrix of the input matrix, i.e. V = 2-[Cov(X)]_}/2 .The

rows of the whitened input matrix are uncorrelated and have unit variance. This



means that the variances of the independent components are equalized and have unit

variance. In this study, it is assumed that the input matrix X is centered and whitened.

There exist several algorithms performing ICA [32-35]. The objective of the
algorithm is to maximize the statistical independency (non-Gaussianity) of the ICs.

The non-Gaussianity of the ICs can be measured by the negentropy [12, 31] given by

J(Y) = H(Ygass) —H(Y) (4)
where y . 1S a Gaussian random vector of the same covariance matrix asy. H is the

entropy of a random vector y with density p, (r7) defined as

H(y)=~[p, () log p,(7)d7

The negentropy is always non-negative and is zero if and only if y has a Gaussian
distribution. It is well justified as an estimator of the non-Gaussianity of the ICs.
Since the problem in using negentropy is computationally very difficult, an

approximation of negentropy is proposed as follows [12]:

J(y) =~{E[G(N]-E[GW]¥ ()
where v is a Gaussian variable of zero mean and unit variance. G is a non-quadratic

function, which is given by G(y) = —exp(-y?/2) in this study for defect detection

applications.
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2.3 The constrained ICA model

In order to make the convolution operation of the resulting filter from the ICA
model consistent with the linear filtering in eq. (1), each training image patch must be
organized as a column vector in the data matrix X. Let the convolution filter be of
size mxn. We select randomly a training image patch of the same size as the filter

from a defect-free surface image, and organize it as a column vector. Let
X, =[Xy, X, -, Xn ]' represent the i-th training column vector of the data matrix X

= [X;, X,,+, Xc], where R=m-n is the total number of pixels in an image patch,
and C is the total number of training image patches. X; is the re-shaped column
vector from the i-th training image patch, i=1,2,---,C. Following the basic ICA

model in eq. (3), a column vector x can be expressed as
C
X=>Ysa =As (6)
i=1

where a,,i=1,2,---,C, is the i-th column of the RxC mixing matrix A, and s =

[31’52""’SC]T-

ICAaims to find a C x R de-mixing matrix W of the data x such that
y =Wx (7)

The vector y is an estimate of the source s, and its components are as statistically

independent as possible.

In this study, the target surfaces to be inspected fall in the class of uniform
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images. Any arbitrarily selected training image patches in a faultless surface image are
considered to be approximately identical, regardless of their positions in the image.
The column images in the data matrix X can thus be treated as the mixture signals
from the same single source. If several independent components are estimated from
the 1ICA model, they simply correspond to translated versions of the original source
signal. Therefore, it is sufficient to estimate just one component and a single row
vector in the de-mixing matrix W for defect detection in uniform surface images.
Since we only need to estimate a single source, the C x R de-mixing matrix W in eq.
(7) is now reduced to a 1x R row vector w, and the resulting component vector y

becomes a scalar y, i.e.

y = WX (8)

In the ICA model of eq. (8), source value y can be interpreted as the most
representative intensity of a faultless surface used in training. The resulting source

image patch can be treated as a constant-intensity image.

Note that the operation in eq. (8) is exactly the same form as the convolution
filtering in eq. (1). Thus, the estimated de-mixing vector w is taken as the convolution
filter, and the resulting source value y is the impulse response of an image patch x
under inspection. Given the data matrix X = [X,, X,,--+, X.] that contains C training
image patches from a faultless surface image, the resulting source y, for each

training image patch X, i.e.

y, =wx;,i=1,2,--,C (9)
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should have the same value since every training image patch is extracted from the
same source surface. As mentioned previously in section 2.1, statistical control limits
are used as the dual thresholds of impulse response to segment local anomalies from
the uniform background. In the search of the best vector w in the training process, we

include a constraint in the ICA model so that the resulting de-mixing row vector, i.e.

the convolution filter, will generate the least variation of source values y,. The
constraint is also constructed in the same way as the statistical control limits
formulated in eq. (2). That is,
m?x{yj}< u, +Ko,
and (10)

mjin{yj}> u, —Ko,

where y; is the resulting source value fromeq. (9), j=1,2,---,C;

C
u, = the mean of y = iZyj .
C <

1 & %
o, = the standard deviation of y = {ﬁz‘(yj —~ yy)z}
_14

K = the control constant, which is user specified. It takes the same value

as that of eq. (2) used in the inspection process.

The constraint in eg. (10) restricts the maximum and minimum source

values y, within the upper and lower control limits, respectively. A small control

constant value K will result in a small deviation of y in the training process. The same
control constant K determined in the training process is conveniently used to set up

the dual thresholds in the inspection process. With a tight constraint in the training
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process, it is expected that defective image patches will result in highly distinct

impulse responses outside the control limits in the inspection process.

In this study, the approximation of negentropy with G(y) = —exp(— y2/2) is used
as the measure of independency. The proposed constrained ICA model for defect

detection in uniform surface images are therefore formulated as

Maximize Fitness(y) = {éi[—exp(— yf/Z)]} (11)

subject to

max{y;} < u, + Ko,
J

and

mjin{yj}> u, —Ko,

where y =wX =[y;,Y,,"Yc1;
w =[w,;,w,,---,Wg] is the de-mixing row vector; w, are the decision variables,

I.e. the filter coefficients, yet to be determined.

The model formulated above is a nonlinear, constrained programming problem
with multiple continuous variables. The FastICA algorithm proposed by Hyvarinen et
al. [12] has been one of the most popular optimization methods in ICA. FastICA is
based on a fixed-point iteration scheme for finding a maximum of the negentropy. It
cannot be directly extended to solve for the de-mixing matrix in the proposed
constrained ICA model. This is because the two constraints in eg. (10) are not

differentiable, which make the gradient descent method not workable. The particle
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swarm optimization algorithm, which is a recently developed high-performance
optimizer, is used in this study to search for the best de-mixing row vector w in the

constrained ICA model.

2.4 The PSO procedure

Particle swarm optimization is an evolutionary computation technique originally
developed by Kennedy and Eberhart [36]. It has been found to be robust and easily
implemented in solving nonlinear optimization problems [37-40]. PSO resembles the
social interaction from a school of flying birds. Individuals in a group of flying birds
are evolved by cooperation and competition among the individuals themselves
through generations [41]. Each individual, named as a “particle”, adjusts its flying
according to its own flying experience and its companions’ flying experience. Each
particle with its current position represents a potential solution to the problem in hand.
In this study, each particle is treated as a point in an R-dimensional space since the

de-mixing row vector w is of R dimensions.

In PSO, a number of particles, which simulate a group of flying birds, are
simultaneously used to find the best fitness in the search space. At each iteration,
every particle keeps track of its personal best position by dynamically adjusting its
flying velocity. The new velocity is evaluated by its current velocity and the distances
of its current position with respect to its previous best local position and the global
best position. After a sufficient number of iterations, the particles will eventually

cluster around the neighborhood of the fittest solution.

Let the i-th particle be represented as w, =[w,,W.,,---,W,,]. The best previous

position, i.e. the position giving the best fitness value, of particle i is recorded and
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represented as p; =[P, Pirs--y Pir]. Assume there are a total of t particles in the
PSO. Let p® =[p/, p;7, -, p3] denote by the best particle that gives the current
optimal fitness value among all the particles in the population. The rate of the position
change, i.e. the velocity, for particle i is represented by v, =[v;;,v;,,"--,Vizr]. Each
particle moves over the search space with a velocity dynamically adjusted according
to its historical behavior and its companions. The velocity and position of a particle

are updated according to the following equations [36, 42]:

Vi Vij +C1'RND1 ‘(pij _Wij)

o (12a)
+¢C,-RND, - (p] —W;;)

new

wi =w,; +vi", fori=12,--,tand j=1,2,---,R (12b)

ij 1

where RND, and RND, are two random numbers in the range between 0 and 1,

c, and c, are two positive constants.

The second term in the right-hand side of the velocity equation in eq. (12a) is
interpreted as the “cognition” part, which represents the private thinking of the
particle itself. The third term in eq. (12a) is the “social” part, which represents the
collaboration among the particles [41, 42]. The two positive constants ¢, and c, are
the weights used to regulate the acceleration of self-cognition (a local best) and social
interaction (a global best). Kennedy and Eberhart [36], and Shi and Eberhart [41]
suggested ¢, =c, =2 since they are on average make the weights for “cognition” and
“social” parts to be 1. They are also the values adopted in this study. The velocity
equation in eq. (12a) calculates the particle’s new velocity in each dimension

according to its previous velocity and the distances of its current position from its own
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best experience (i.e. position) and the group’s best experience. Then the particle
moves toward a new position according to the position update equation in eq. (12b).
The performance of each particle is measured by the fitness value, i.e. the objective
function value. Since the proposed ICA model involves a constraint, only the
positions in the feasible space are recorded when calculating the local best p, and the

global best p? in the PSO search procedure.

We can now formally present the PSO search procedure for the constrained ICA

model. The following symbols are the notation used in the algorithm.

Notation:
t = the number of particles in the swarm
X = the training data matrix

=[X,,X,,"--, Xc ], where C is the number of training image patches
X, =Xy, Xipr ooy Xin |"
= the i-th column vector of X, which is re-shaped from an image patch of size
mxn, and therefore R=m-n, for i =1,2,---,C
Wi :[Wil1Wi2'”"WiR]
= the position of particle i, for i =1,2,---,t,
which is the de-mixing row vector, i.e. the decision vector to be estimated.
Note that we only need one source component in this study and, therefore,
we need to estimate only one de-mixing row vector for each particle.

Fitness(y) = the fitness value of y

The procedure:

17



Step 1. Center and whiten the data matrix X.
Step 2. Initialize:
Randomly generate the initial position and velocity of each particle i
W, =[Wiy, Wiy, e, Wig ]
and

Vi =[Viy, Vip, o Vgl fori=1,2,---t.

In order to prevent overshoot of the target position, small initial values of w;

and v; are selected in the ranges of —0.5< w; < 0.5and0< v; < 0.1.

Compute the fitness value of each particle:

Fitness(y,) = {% Z[—GXD(— v/ 2)]}

where y; =W, X =Yy, ¥, Yic ], for i=1,2,-- t.

Determine the local best position of particle i and the global best position:

P =[Pu, Pizseery Pl =W;, for i=12,---t

p? =[p?. p;.-- Pr]=arg max {Fitness(p; - X)}
Step 3. Update the velocity and position of each particle i, for i =1,2,---,t:

Vi Vij +C1'RND1'(pij _Wij)+c2 'RNDz (pjg _Wij)

) =

wit =w; +vi, for j=1,2,-+R

new new new new
Let w™ =[w ™, Wiy, Wi ]

Swap the new and old velocities and positions by setting

18



_yyNew

Vi = Vi,

new

and w;; = w;]

Step 4. Normalize w™®":

W e w |l we |, fori=1,2,-t.

Step 5. Evaluate the new fitness values, and update local best positions p, and the

global best position p?:

If Fitness(w™" - X) > Fitness(p, - X), then let p, =w™",

else retain the current value of p,, fori=1,2,---,t.

Let p® =arg max {Fitness(p, - X)}.
Step 6. Compute the estimated source y based on the global best position p?:

y=p"-X=[y,Y Yl

Step 7. Evaluate the feasibility of y:

If max{y,;}< u, + Ko, and min{y;}> u, - Ko,
J J

then store the current best feasible solution with w* « p?.

Otherwise, skip to Step 8.

u, and o, are the mean and standard deviation of y; in y, and K is a

predetermined control constant.
Step. 8. Check for the stopping criterion:
If the maximum number of search iterations is reached, then go to Step 9.
Otherwise, repeat Steps 3 through 8 until the stopping criterion is met.
Step 9. Deliver the solution:

w" =[w;,w;,---,W;] is the best solution obtained, and is used as the

convolution filter for defect detection in this study. If w* is null, no feasible
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solution can be delivered in the PSO search process. The number of search
iterations, and/or control constant K may have to increase to find a feasible

solution of the constrained ICA model.

PSO is an extremely simple and easily implemented algorithm that can
dynamically adjust the current local and global positions with a large number of
particles in the swarm to simultaneously find the solution from different positions in
the search space. It is well suited for the constrained ICA model that involves
typically hundreds of decision variables, even with a small image patch of

size 20x20.

The resulting de-mixing row vector w* =[w;,w,,---,w;] must be converted

back to a 2D filter h(i, j) so that the 2D convolution operation of eq. (1) can be
followed in the inspection process for a 2D inspection image. For a convolution filter

of size mxn, the conversion is given by
h(i-1,j-1) =w;

-1)n+j

fori=12,---mand j=1,2,---,n.

3. Experimental results

This section presents the experimental results from a number of low-contrast
surface images found in backlight panels and LCD glass substrates to evaluate the
performance of the proposed ICA-based filter design scheme. The test images in the

experiments are 200x 200 pixels wide with 8-bit gray levels. In the PSO search
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algorithm, the required parameters are set up as follows: the population size (the
number of particles) t = 10, the weights ¢, =c, =2, and the maximum number of
iterations (stopping criterion) is 200. Image patches used in training are of
size 20x 20, and the total number of image patches to form a data matrix is 100,
unless otherwise specified. The training image patches were randomly selected from a
faultless surface image. In the inspection process, pixels with impulse responses
falling within and outside the control limits are respectively represented by white and
black intensities so that the detected defects can be visibly observed and verified in
the binarized image.

Figure 2(a) shows a defective backlight panel image, and Figure 2(b) is the
enhanced version of the image. It is used to demonstrate the effect of varying values
of control constant K on detection results. The faultless backlight panel image shown
in Figure 1(a) was used as the training image, from which the training image patches
were extracted. Figure 3 depicts the plot of the fitness value as a function of iteration
number. It can be observed from the figure that the PSO search process converges fast
after 150 iterations, and it is the case for all test samples evaluated in this study.

Therefore, 200 iterations are considered to be sufficient for our problem.

Table 1 summarizes the resulting standard deviation o, of the 100 training

image patches extracted from Figure 1(al) and the corresponding maximum fitness
value for each individual control constant value of K. As expected, the standard
deviation o, decreases when the value of the control constant K used to set up the
constraint in training is decreased. The uncontrained ICA model (i.e. K = )

generates the largest variation of source values y, and the largest fitness value. Figures

2(c)-(f) illustrate the detection results of the defective surface image in Figure 2(a)
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from control constant K = 2.5, 3.0, 3.5 and «, respectively. It can be observed from
Figure 2(f) that the convolution filter generated from the unconstrained ICA model
results in much noise. (Note that the detection results of Figure 2(f) is based on the
segmentation of the control limits with K = 3 in the inspection process. The use of K =
3 is to follow the typical 3-sigma standard deviation used in statistical control limits.)
A control constant K = 2.5 or 3.0 generates similar and satisfactory results for the
constrained ICA model. It has been found that the PSO search process cannot find a
feasible solution for the constrained ICA model with a control constant K less than 2,
even the number of particles and the maximum number of search iterations are

respectively increased up to 50 and 5000.

In practical implementation, K = 2.5 or 3 can be used to set up the constraint. The
tighter control constant K = 2.5 generally gives more noisy points but preserves a
better shape and area of a detected defect in an inspection image. This is because a
smaller control constant value results in tighter control limits to segment local
anomalies from the uniform background in the inspection process. The tiny noisy
points can be easily removed using a post-processing technique such as the
morphological operations. Throughout the subsequent experiments, a control constant
K = 3 is used to set up the constraint in the training process, and control limits

(thresholds) in the inspection process.

3.1 Detection in low-contrast surface images

Figure 4(al) shows a faultless backlight panel image. Figures 4(a2)-(a5) illustrate
four defective surface images of backlight panels, in which the subtle defects
embedded in the low-contrast surfaces are hardly visible. Figures 4(b1)-(b5) are the

respective enhanced images of Figures 4(al)-(a5) to visualize the locations and shapes
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of defects. Note that the geometric structure and uneven illumination of backlight
panel surfaces are also highlighted in the enhanced images. Under the control constant
K = 3, the detection results from the convolution filter are demonstrated as binary
images and shown in Figures 4(c1)-(c5). In the defective images of Figures 4(a2)-(a5),
all hardly-visible defects are well detected. For the faultless surface image of Figure
4(al), the resulting binary image is uniformly white and no defect is claimed. In order
to demonstrate the detected shape and location of a defect in the binary image, a
morphological closing is first carried out on the binary image, and then the boundary
of the detected defect in the post-processing image is superimposed on the enhanced
image. Figures 5(a)-(d) present the superimposed results for the four defective images
in Figures 4(a2)-(a5), respectively. They show that the shape and location of each

subtle defect in a low-contrast surface image can be reliably identified.

Figure 6 demonstrates further the detection results of LCD glass substrate images.
Figure 6(al) is a clear glass substrate image, and Figures 6(a2)-(a5) are four defective
glass substrate images. It can be seen from the enhanced images in Figures 6(b1)-(b5)
that LCD glass substrates contain a horizontal structural pattern with uneven lighting
on the surfaces. Figures 6(c1)-(c5) show the detection results as binary images using
the trained convolution filter and the control constant with K = 3. The detection results
also reveal that all local defects embedded in low-contrast surface images can be
effectively detected, and the resulting binary image of a clear surface image is
approximately a uniform white image. In the following two subsections, we
individually discuss the effects of changes in window size of a filter and number of

training image patches on the detection results.

3.2 Effect of changes in window size
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In the present study, the size of the neighborhood window is set at 20x 20
pixels. The choice of a proper window size must be large enough to contain the image
content in the surrounding region of each pixel. Too small a window size causes
insufficient representation of common characteristics of a surface image and may
generate much noise in the filtered image. However, too large a window size may
over-smooth subtle defects and requires more computation time in the inspection
process. In order to evaluate the effect of varying window sizes on the convoluted
responses, the two defective backlight panel images shown in Figures 4(a3) and (a4)
are used as the test samples. In the experiment, the window size of an image patch
was varied from 10x10, 15x15, 20x 20 and 25x 25 pixels. All parameter values of
the PSO search procedure were the same as those described previously to find the best

convolution filter for each of the four window sizes.

Figures 7(al)-(a4) and 7(b1)-(b4) show, respectively, the detection results of the
two defective surface images in Figures 4(a3) and (a4) from the four window sizes.
The detection results of both test images consistently reveal that the small window
size 10x10 cannot reliably detect the defects and generates much random noise. The
large window size 25x 25 over-smoothes the small defects, and makes the detected
defect pixels become scattered. Window sizes 15x15 and 20x 20 generate similar
detection results, and the defects in both test images are well segmented. They are
recommended for the application of defect detection in low-contrast uniform surface

images.

3.3 Effect of the number of training image patches
In the previous experiments, we used 100 image patches randomly selected from

a faultless surface image to construct the column vectors of the data matrix in the
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training process. In this subsection, we evaluate further the effect of changes in the
number of training image patches. Again, the two defective backlight panel images
shown in Figures 4(a3) and (a4), and the additional faultless surface image in Figure

4(al) are used as the test samples.

The number of training image patches of size 20x 20 was varied from 50, 100 to
150. All parameter values used in the PSO search procedure were the same for these
three different sizes of data matrices. The detection results shown as binary images are
presented in Figure 8. It is apparent from Figures 8(al), (b1) and (c1) that the small
number of 50 image patches does not provide a sufficient data matrix for training.
Although the subtle defects can be still detected, they appear in a much scattering
manner and much noise is generated in the filtered images. The numbers of 100 and
150 training image patches generate similar detection results, as seen in Figures
8(a2)-(a3), (b2)-(b3) and (c2)-(c3). In considering the required computation time in
the training process, 100 training image patches are sufficient to construct the data

matrix for the design of a convolution filter in defect detection applications.

Before the end of the Experiment section, the proposed method is also applied to
the enhanced version of the low-contrast images in Figures 4 and 6, in which the
defects along with the structured texture and uneven brightness are much clear.
Figures 9(al)-(a5) and (bl)-(b5) show, respectively, the detection results of the
proposed method with control constant K = 2.5 for the enhanced images in Figures
4(b1)-(b5) and 6(b1)-(b5). The experimental results reveal that all defects in the test
images can also be detected, but much noise is generated in the filtered images and
the detected defect sizes are scattered. This is because the training images contain

complicated textures in the unevenly illuminated background. The randomly selected
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image patches used in training are beyond a simple translated version to each other, i.e.
they may involve more than one latent source. A few independent components (i.e. a
filter bank) may have to be estimated from the constrained ICA model for better

detection results of the enhanced images.

A comparative experiment between the proposed method and the well-known
Wiener filter [43, 44] is further given in Figures 10 and 11 based on the test samples
in Figures 4(al)-(a5) and 6(al)-(ab). Figures 10(al)-(a5) show the resulting images of
Wiener filtering for the original images of the LCD backlight panels in Figures
4(al)-(ab), respectively. To follow the same control limits of the proposed method, the
control constant of K = 3 is also used for the Wiener-filtered images, and the
binarized images are presented in Figures 10(b1)-(b5). Figures 11(al)-(a5) and
(b1)-(b5) present the resulting images of Wiener filtering and their binarization for the
original images of the LCD glass substrates in Figures 6(al)-(a5). The experimental
results indicate that the Wiener filtering method can well detect better-contrasted
anomalies, while it cannot effectively segment the subtle defects such as those shown

in Figures 4(a2) and 6(a3).

4. Conclusions

Detecting small defects which appear as local anomalies embedded in a
homogeneous surface is a common problem in automated surface inspection in
industry. The defects under inspection are generally small in size and show no distinct
intensity variations from their surrounding regions. Therefore, simple thresholding
and gradient-based methods cannot be reliably applied to identify such defects in

low-contrast surface images. In this study, we have presented a filtering approach for
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defect detection in low-contrast surface images. The characteristic of each pixel in the
inspection image is measured by the impulse response which is obtained by the

convolution of the image with a specifically designed filter.

A constrained ICA model has been proposed for the design of the convolution
filter. The objective of the ICA model is based on the maximization of negentropy
with the constraint that all resulting source values from the training image patches are
within statistical control limits. The ICA objective makes the convolution filter have
the most representative source intensity of a training surface image, while the
constraint in the ICA model confines the variation of source values from all training
image patches within a satisfactory level. The merit of the constraint in the ICA model
is that the same control constant K selected in the training process is also used to set
up the control limits for segmenting local anomalies from the uniform background in
the inspection process. This eliminates the tiresome and unreliable try-and-error

approach to determine the threshold values for segmentation.

Since the images of the object surfaces studied in this paper can be considered as
having a uniform intensity, all image patches anywhere in a defect-free surface are
considered to be identical. The training image patches entered as column vectors in
the data matrix are then the translated versions of the same source signal. Therefore, it
Is enough to estimate just one source component and its corresponding de-mixing row
vector. The resulting de-mixing vector that satisfies the constraint in the ICA model is
used as the convolution filter. PSO that uses a group of particles to simultaneously and
dynamically search for local best positions and the global position is applied to solve
for the constrained ICA model. Experimental results showed that the PSO search

procedure can effectively find a feasible solution involving hundreds of continuous
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decision variables in a moderate number of iterations.

The convolution filter derived from the constrained ICA model will give an
impulse response within the control limits when the filter spans a faultless region in
the inspection image, and will generate a distinct impulse response outside the control
limits for a defective region. Experimental results from the backlight panels and LCD
glass substrates have shown that the proposed ICA-based filtering scheme can
effectively detect various small defects in low-contrast surface images. It is concluded
from the experiments that the following parameter setup can generate good detection
results for defect inspection in uniform surface images. For the PSO search algorithm,
population size t = 10, positive weights ¢, =c, =2, and number of iterations = 200.
For the constrained ICA model, number of training image patches = 100, image patch

size = 20x 20, and control constant K =2.5 or 3.

Although the proposed method currently aims at defect detection in uniform
surface images, it is believed that it can be easily extended to the inspection of defects
in homogeneous texture images. A homogeneous texture will show self-similarity
property in the image, which means all sufficiently large image patches are similar to
each other, regardless of their positions in the textured image. If all training image
patches in a faultless textured image can be considered as the translated versions of
the original texture pattern, the proposed constrained ICA model can then be used to
design a single convolution filter for distinguishing local anomalies from the

homogeneous texture background.
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(al) (b1)

(a2) (b2)

(@3) (b3)
Figure 1. Low-contrast sample images of LCD backlight panels: (al) faultless surface

image; (b1) defective surface image; (a2), (b2) respective enhanced images;
(a3), (b3) respective gradient images.
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Figure 2. Effect of varying control constant K in training: (a) original image of a
defective backlight panel; (b) enhanced image of (a) to show the defect in
the surface; (c)-(f) detection results as binary images from the control
constant K = 2.5, 3, 3.5 and infinite, respectively.
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Figure 3. Plot of the fitness value with respect to the number of iterations, which
shows the convergence of the PSO search procedure for the backlight panel
image in the constrained ICA model.
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Figure 4. Detection results of LCD backlight panels: (al)-(a5) a clear and four
defective surface images; (bl)-(b5) respective enhanced images of
(al)-(ab); (cl)-(c5) respective resulting binary images for defect
segmentation.
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Figure 5. (a)-(d) Superimposing boundaries of detected defect areas on the enhanced

images for the defective backlight panel surfaces in Figures 4(a2)-(a5),
respectively.
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Figure 6. Detection results of LCD glass substrates: (al)-(a5) a clear and four
defective surface images; (b1)-(b5) respective enhanced images; (c1)-(c5)
respective resulting binary images for defect segmentation.
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Figure 7. Effect of changes in window size: (al)-(a4) detection results from window
sizes 10x10, 15x15, 20x 20 and 25x 25 for the defective backlight panel

image in Figure 4(a3); (bl)-(b4) detection results from the respective
window sizes for the defective panel image in Figure 4(a4).

39



(al)C _50 (b1)C =50 (c1)C =50

L
(a2) C =100 (b2)C =100 (c2)C =100
(a3)C =150 (b3)C =150 (c3)C =150

Figure 8. Effect of changes in the number of training image patches C: (al)-(a3)
detection results from C =50, 100 and 150 for the defective backlight
panel image in Figure 4(a3); (b1)-(b3) detection results from C =50, 100
and 150 for the defective image in Figure 4(a4); (c1)-(c3) detection results
from C =50, 100 and 150 for the faultless image in Figure 4(al).
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Figure 9. (al)-(a5) Respective detection results of the enhanced images in Figure
4(b1)-(b5); (b1)-(b5) respective detection results of the enhanced images in
Figure 6(b1)-(b5). (The control constantisat K =2.5.)
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Figure 10. (al)-(a5) Respective Wiener-filtered images of the LCD backlight panels in
Figures 4(al)-(a5); (b1)-(b5) respective binarized images of (al)-(a5) from
the 3-sigma control limits.
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Figure 11. (al)-(a5) Respective Wiener-filtered images of the LCD glass substrates in
Figures 6(al)-(ab); (b1)-(b5) respective binarized images of (al)-(a5) from

the 3-sigma control limits.
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