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An independent component analysis based filter design 

 for defect detection in low-contrast surface images 
 

Abstract 
 

 In this paper, we propose a convolution filtering scheme for detecting small 
defects in low-contrast uniform surface images and, especially, focus on the 
applications for backlight panels and glass substrates found in Liquid Crystal Display 
(LCD) manufacturing. A defect embedded in a low-contrast surface image shows no 
distinct intensity from its surrounding region, and even worse, the sensed image may 
present uneven brightness on the surface. All these make the defect detection in 
low-contrast surface images extremely difficult.  
  
 In this study, a constrained ICA (independent component analysis) model is 
proposed to design an optimal filter with the objective that the convolution filter will 
generate the most representative source intensity of the background surface without 
noise. The prior constraint incorporated in the ICA model confines the source values 
of all training image patches of a defect-free image within a small interval of control 
limits. In the inspection process, the same control parameter used in the constraint is 
also applied to set up the thresholds that make impulse responses of all pixels in 
faultless regions within the control limits, and those in defective regions outside the 
control limits. A stochastic evolutionary computation algorithm, particle swarm 
optimization (PSO), is applied to solve for the constrained ICA model. Experimental 
results have shown that the proposed method can effectively detect small defects in 
low-contrast backlight panels and LCD glass substrate images. 
 
Keyword: Defect detection, Surface inspection, Independent component analysis, 

Convolution filter; Particle swarm optimization   
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1. Introduction 

 

Image analysis techniques are being increasingly used to automate industrial 

inspection. The manual activity of inspection could be subjective and highly 

dependent on the experience of human personnel. Subtle defects appearing in a 

low-contrast surface cannot be visibly identified even with a well-trained inspector.  

In automatic surface inspection, small defects which appear as local anomalies 

embedded in a homogeneous surface must be reliably detected. This paper considers 

the issue of designing a convolution filter for defect detection in low-contrast surface 

images using Independent Component Analysis (ICA). 

 

Defect detection in uniform surface images arises in glass plate [1], sheet steel 

[2], aluminum strips [3] and web materials [4]. Most of the existing defect detection 

methods for uniform surfaces use simple thresholding or edge detection techniques. 

Defects in these images can be easily detected because they commonly have distinctly 

measured values with respect to those of the uniform background. The inspection task 

in the present paper is the detection of subtle defects in uniform surfaces that involve 

low-contrast intensities in images.  This type of surfaces arises in many industrial 

materials.  In this paper, we especially aim at backlight panels and glass substrates in 

Thin Film Transistor-Liquid Crystal Display (TFT-LCD) manufacturing. 

 

In recent years, there is a great demand for flat-panel displays used as monitors 

for notebook and personal computers, and as viewfinders for handheld devices such as 

cellular phones and PDAs. TFT-LCDs have become increasingly important as one of 

flat panel display devices due to their full-color display capabilities, low power 

consumption and light weight.  The backlight unit and LCD glass substrate are two 
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important components composing a TFT-LCD module. The inspection of defects in 

such panel surfaces ensures the display quality and improves the yield in LCD 

manufacturing. Most of the existing machine vision algorithms for defect inspection 

in LCD panel surfaces are still mainly based on thresholding, edge detection and 

first-order statistics [5] such as mean and variance from the gray-level histogram of an 

image. Kim et al. [6] presented an automated inspection algorithm for detecting 

spot-type defects in TFT-LCD panels. An adaptive multi-level thresholding method 

that uses the statistical characteristics of the local area is applied for adaptive 

segmentation of spot-type defects. Saitoh [7] proposed a machine vision system for 

the inspection of LCD brightness unevenness. An edge detection algorithm was first 

used to detect discontinuous points. A genetic algorithm was then applied to extract 

the visual continuous boundary of a non-uniform brightness region for distinguishing 

true defects from noise. Jiang et al. [8] used a luminance meter, instead of a CCD 

camera, as the sensing device for detecting brightness unevenness in LCD panels. 

Analysis of variance (ANOVA) and exponentially weighted moving average 

techniques were applied to determine the presence of region-type defects. Sokolov 

and Treskunov [9] developed an automatic vision system for final output checks of 

LCDs. Their method was mainly based on the brightness distribution of an LCD 

image. It compares the average brightness of background between a reference LCD 

image and an inspection image to detect the appearance of defects.  

 

In low-contrast surfaces, a local anomaly has smooth change of brightness from 

its surrounding region and, therefore, has no clear edges to apply the gradient-based 

methods for defect detection. The non-uniform intensity of a faultless region and the 

low-contrast intensity of a defective region also deter the use of simple thresholding 

methods. It is extremely difficult to reliably identify real defects in low-contrast 
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surface images without false detection of noise. Lee and Yoo [10] proposed a 

complicated data fitting approach for detecting regional defects of brightness 

unevenness. They first estimated the background surface of an inspection image using 

a low-order polynomial data fitting. Subtraction of the estimated background surface 

from the original image is then applied to find the threshold for binary segmentation. 

The resulting image is then post-processed by median filtering, morphological closing 

and opening to remove noise and refine the segmentation. The proposed method 

worked successfully to detect regional defects in low-contrast TFT-LCD surface 

images. However, it is very computationally intensive because the background surface 

must be estimated recursively by eliminating one pixel at a time throughout the entire 

inspection image. 

 

In this paper, we propose a convolution filtering scheme for defect detection in 

low-contrast uniform surface images. The design of the convolution filter is based on 

independent component analysis with the goal that the resulting impulse responses are 

consistently the same for pixels in faultless regions and distinctly different for pixels 

in defective regions. ICA is a novel statistical signal process technique to extract 

independent sources given only observed data that are mixtures of the unknown 

sources, without any prior knowledge of the mixing mechanisms [11, 12]. The 

observed signals are generally assumed to be a linear mixture of the unknown sources 

from a mixing matrix which is solved by maximizing the independency of the 

estimated source signals. The estimated source signals are termed independent 

components (ICs), and the inverse of the mixing matrix is called de-mixing matrix. 

 

ICA has been widely applied in medical signal processing such as EEG, fMRI 

and MEG data [13-17], and audio signal processing [18, 19] for the purpose of signal 
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de-noising and extraction of meaningful sources for interpretation. It also has been 

applied in face recognition [20-23] and texture analysis [24-26] that used either the 

estimated independent components or the corresponding column vectors of the mixing 

matrix (or row vectors of the de-mixing matrix) as features for classification. 

Hyvarinen et al. [27, 28], Hyvarinen [29] and Hung and Luo [30] used ICA for image 

denoising. They applied the ICA algorithm and maximum a posteriori (MAP) 

estimator in a noise-free training image to find the mixing matrix. The mixing matrix 

is then used in a sensed image to obtain the noisy ICs. The shrinkage nonlinearity 

function is applied to remove noise in the noisy ICs.  The filtered ICs were finally 

multiplied with the mixing matrix to restore the image. 

 

In this study, ICA is used to design an optimal filter in the sense that the filter 

will generate the most representative source intensity of the background surface 

without noise so that all pixels in faultless regions have approximately the same 

impulse responses, while the pixels in defective regions have distinct responses in the  

filtered image. In an ICA model, independent components and the mixing matrix that 

constructs the observed signals can be estimated from the training samples by 

maximizing the independency of the estimated sources. Since any training image 

patches of the same size as the filter in a faultless surface image can be treated as 

translated versions of the same pattern, only one source is needed to be estimated in 

this study. The corresponding row vector of the estimated source in the de-mixing 

matrix is used as the convolution filter for defect detection in low-contrast uniform 

surface images.  

 

An ICA model with a prior constraint is applied to determine the filter so that the 

impulse responses of all training image patches are as consistent as possible. The 



6 

constraint incorporated in the ICA model is given by the upper and lower control 

limits defined by the mean and standard deviation of the resulting impulse responses 

of all image patches used in training. In this study, we propose a stochastic 

optimization procedure based on the Particle Swarm Optimization (PSO) algorithm to 

effectively determine the de-mixing row vector, i.e. the convolution filter, of the 

constrained ICA model. In the inspection process, the same parameter value of the 

control limits used as the constraint in the training process is conveniently adopted to 

set up the thresholds for segmenting defects from the background surface. The 

convolution filter will give an impulse response within the control limits when the 

sliding window of the filter spans a regular region in the inspection image, and will 

generate a distinct impulse response outside the control limits for a defective region. 

This transforms the low image difference into a detectable filter output. 

 

Two types of low-contrast surfaces, backlight panels and glass substrates found 

in LCD manufacturing, are the main application targets of the proposed method. 

Figures 1(a1) and (b1) show, respectively, a faultless backlight panel image and a 

defective one. The subtle defect is nearly invisible in the low-contrast image. Figures 

1(a2) and (b2) illustrate the respective enhanced images by linearly stretching the 

original gray levels in Figures 1(a1) and (b1) between 0 and 255 for an 8-bit display. 

The subtle defect is now much better visible in the enhanced image of Figure 1(b2). 

Owing to the inherent structural pattern on the backlight panel surface, the enhanced 

images turn into structurally textured images with uneven illumination. The task of 

defect detection in such an enhanced image becomes difficult because it is hard to 

distinguish defects from noise in a textured image with non-uniform illumination. 

Figures 1(a3) and (b3) present the gradient images of Figures 1(a1) and (b1), 

respectively. The resulting images reveal that the characteristic of a low-contrast 
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surface image invalidates the use of gradient magnitude to identify a defect without 

false alarms of noise. 

 

This paper is organized as follows: Section 2 first discusses the convolution 

filtering approach for defect detection in uniform surface images. The basic ICA 

model is then overviewed. The constrained ICA model used for the design of the 

convolution filter is next introduced. The PSO search algorithm that determines the 

best filter coefficients from the constrained ICA model is finally presented. Section 3 

demonstrates the experimental results from a number of backlight panels and LCD 

glass substrates containing various local defects. The impact of the constraint setup in 

the ICA model, and the effect of changes in filter size are also evaluated in this section. 

The paper is concluded in Section 4. 

 

2. The proposed ICA filtering scheme 

 

2.1 Convolution filtering 

 In this study, we propose a filtering approach for defect detection in low-contrast 

surface images. The advantages of the filtering method for defect inspection are 

threefold: 1) its implementation is simple and straightforward in the inspection 

process since it involves only simple convolution operations; 2) it takes only one filter 

to detect various unanticipated defects in a uniform surface image; 3) it converts the 

difficult qualitative measures of ill-defined defects into a simple detectable impulse 

response. To fulfill all the benefits of the filtering method in the inspection process, it 

relies on the design of an optimal filter with the objective that the impulse responses 

of all pixels in defective regions are highly distinct from those in faultless regions in 

an image. 



8 

 Let  ),( yxf be the gray level at pixel coordinates  ),( yx in an inspection image 

of size NM × , and  ),( jih the filter of size nm× . The impulse response  ),( yxr at 

point  ),( yx is given by convolving an image patch of size nm× with the filter, i.e. 
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The convolution filter slides over the entire inspection image pixel by pixel so that the 

impulse response of every pixel in the image can be evaluated. If the resulting impulse 

responses of defective pixels are distinctly different from those of faultless pixels, the 

statistical process control principle can be simply used to set up the control limits (i.e. 

the thresholds) for distinguishing local anomalies from the uniform background in the 

filtered image. The upper and lower control limits for response magnitude variation in 

the filtered image are given by 
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where   rμ and   rσ are the mean and standard deviation of impulse responses in the 

filtered image of size NM × , i.e. 
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K is a control constant, and is generally given by 3 to follow the statistical 3-sigma 

standard. 
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 In this study, a constrained version of ICA model is used to determine the best 

convolution filter for defect detection in low-contrast surface images. The basic ICA 

model is initially overviewed in the following subsection. 

 

2.2 The basic ICA model 

 In the basic ICA model [12, 31], the observed mixture signals X can be expressed 

as  

                              X = AS                               (3) 

where A is an unknown mixing matrix; S represents the latent source signals, meaning 

that they cannot be directly observed from the mixture signals X. The ICA model 

describes how the observed mixture signals X are generated by a process that uses the 

mixing matrix A to mix the latent source signals S. The source signals are assumed to 

be mutually statistically independent. Based on the assumption, the ICA solution is 

obtained in an unsupervised learning process that finds a de-mixing matrix W. The 

matrix W is used to transform the observed mixture signals X to yield the independent 

signals, i.e. WX = Y. The independent signals Y are used as the estimates of the latent 

source signals S. The components of Y, called independent components, are required 

to be as mutually independent as possible. 

 

 Two preprocessing steps are common in ICA, centering and whitening [12, 20]. 

First, the input matrix X is centered by subtracting the mean of each columns of X. 

The matrix X with zero mean is then passed through the whitening matrix V to 

remove the second order dependency. The whitening matrix V is twice the inverse 

square root of the covariance matrix of the input matrix, i.e. 2
1

)]([2 
−

⋅= XV Cov .The 

rows of the whitened input matrix are uncorrelated and have unit variance. This 
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means that the variances of the independent components are equalized and have unit 

variance. In this study, it is assumed that the input matrix X is centered and whitened. 

 

 There exist several algorithms performing ICA [32-35]. The objective of the 

algorithm is to maximize the statistical independency (non-Gaussianity) of the ICs. 

The non-Gaussianity of the ICs can be measured by the negentropy [12, 31] given by 

 

)()()( yyy HHJ gauss −=                            (4) 

where   gaussy is a Gaussian random vector of the same covariance matrix as y. H is the 

entropy of a random vector y with density  )( ηyp defined as  

 

ηηη dplogpH )()()( yyy ∫−=                          

 

 The negentropy is always non-negative and is zero if and only if y has a Gaussian 

distribution. It is well justified as an estimator of the non-Gaussianity of the ICs. 

Since the problem in using negentropy is computationally very difficult, an 

approximation of negentropy is proposed as follows [12]: 

 

2})]([)]([{)( vGEyGEyJ −≈                        (5) 

 

where v is a Gaussian variable of zero mean and unit variance. G is a non-quadratic 

function, which is given by  )2()( 2yexpyG −−= in this study for defect detection 

applications. 
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2.3 The constrained ICA model 

 In order to make the convolution operation of the resulting filter from the ICA 

model consistent with the linear filtering in eq. (1), each training image patch must be 

organized as a column vector in the data matrix X. Let the convolution filter be of 

size nm× . We select randomly a training image patch of the same size as the filter 

from a defect-free surface image, and organize it as a column vector. Let 

T
iRiii xxx ],,,[ 21 L=x represent the i-th training column vector of the data matrix X 

= ],,,[ 21 Cxxx L , where   nmR ⋅= is the total number of pixels in an image patch, 

and C is the total number of training image patches.   ix is the re-shaped column 

vector from the i-th training image patch, C,i ,,21 L= . Following the basic ICA 

model in eq. (3), a column vector x can be expressed as 

 

Asax == ∑
=

C

i
iis

1
                                (6) 

 

where Cii ,,2,1 , L=a , is the i-th column of the   CR× mixing matrix A, and s = 

T
Csss ],,,[ 21 L . 

 

 ICA aims to find a   RC × de-mixing matrix W of the data x such that 

 

  Wxy =                                         (7) 

 

The vector y is an estimate of the source s, and its components are as statistically 

independent as possible. 

 

 In this study, the target surfaces to be inspected fall in the class of uniform 
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images. Any arbitrarily selected training image patches in a faultless surface image are 

considered to be approximately identical, regardless of their positions in the image. 

The column images in the data matrix X can thus be treated as the mixture signals 

from the same single source. If several independent components are estimated from 

the ICA model, they simply correspond to translated versions of the original source 

signal. Therefore, it is sufficient to estimate just one component and a single row 

vector in the de-mixing matrix W for defect detection in uniform surface images. 

Since we only need to estimate a single source, the   RC × de-mixing matrix W in eq. 

(7) is now reduced to a  1 R× row vector w, and the resulting component vector y 

becomes a scalar y, i.e. 

 

wx=y                                         (8) 

 

In the ICA model of eq. (8), source value y can be interpreted as the most 

representative intensity of a faultless surface used in training. The resulting source 

image patch can be treated as a constant-intensity image. 

 

 Note that the operation in eq. (8) is exactly the same form as the convolution 

filtering in eq. (1). Thus, the estimated de-mixing vector w is taken as the convolution 

filter, and the resulting source value y is the impulse response of an image patch x 

under inspection. Given the data matrix X =  ],,,[ 21 Cxxx L that contains C training 

image patches from a faultless surface image, the resulting source   iy for each 

training image patch ix , i.e. 

 

Ciy ii , , 2 , 1 , L== wx                            (9) 
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should have the same value since every training image patch is extracted from the 

same source surface. As mentioned previously in section 2.1, statistical control limits 

are used as the dual thresholds of impulse response to segment local anomalies from 

the uniform background. In the search of the best vector w in the training process, we 

include a constraint in the ICA model so that the resulting de-mixing row vector, i.e. 

the convolution filter, will generate the least variation of source values iy . The 

constraint is also constructed in the same way as the statistical control limits 

formulated in eq. (2). That is, 

                     yyjj
Kymax σμ +<}{  

and                                             (10) 

                     yyjj
Kymin σμ −>}{  

 

where   jy is the resulting source value from eq. (9), Cj ,,2,1 L= ; 

      =yμ the mean of y = ∑
=

C

j
jy

C 1

1 ; 

  

      =yσ the standard deviation of y =
2

1

1

2)(
1

1 
⎭
⎬
⎫

⎩
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−
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=

C

j
yjy
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      =K the control constant, which is user specified. It takes the same value 

          as that of eq. (2) used in the inspection process. 

 

The constraint in eq. (10) restricts the maximum and minimum source 

values   iy within the upper and lower control limits, respectively. A small control 

constant value K will result in a small deviation of y in the training process. The same 

control constant K determined in the training process is conveniently used to set up 

the dual thresholds in the inspection process. With a tight constraint in the training 
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process, it is expected that defective image patches will result in highly distinct 

impulse responses outside the control limits in the inspection process. 

 

 In this study, the approximation of negentropy with  )2()( 2yexpyG −−= is used 

as the measure of independency. The proposed constrained ICA model for defect 

detection in uniform surface images are therefore formulated as  

 

         Maximize
2

1

2 )]2([1)( 
⎭
⎬
⎫

⎩
⎨
⎧

−−= ∑
=

C

j
jyexp

C
Fitness y                 (11) 

subject to  

           yyjj
Kymax σμ +<}{  

 and 

           yyjj
Kymin σμ −>}{  

 

where ],,[ 21 Cyyy L== wXy ; 

 ],,,[ 21 Rwww L=w is the de-mixing row vector;   iw are the decision variables, 

i.e. the filter coefficients, yet to be determined. 

 

 The model formulated above is a nonlinear, constrained programming problem 

with multiple continuous variables. The FastICA algorithm proposed by Hyvarinen et 

al. [12] has been one of the most popular optimization methods in ICA. FastICA is 

based on a fixed-point iteration scheme for finding a maximum of the negentropy. It 

cannot be directly extended to solve for the de-mixing matrix in the proposed 

constrained ICA model. This is because the two constraints in eq. (10) are not 

differentiable, which make the gradient descent method not workable. The particle 
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swarm optimization algorithm, which is a recently developed high-performance 

optimizer, is used in this study to search for the best de-mixing row vector w in the 

constrained ICA model. 

 

2.4 The PSO procedure 

 Particle swarm optimization is an evolutionary computation technique originally 

developed by Kennedy and Eberhart [36]. It has been found to be robust and easily 

implemented in solving nonlinear optimization problems [37-40]. PSO resembles the 

social interaction from a school of flying birds. Individuals in a group of flying birds 

are evolved by cooperation and competition among the individuals themselves 

through generations [41]. Each individual, named as a “particle”, adjusts its flying 

according to its own flying experience and its companions’ flying experience. Each 

particle with its current position represents a potential solution to the problem in hand. 

In this study, each particle is treated as a point in an R-dimensional space since the 

de-mixing row vector w is of R dimensions. 

 

 In PSO, a number of particles, which simulate a group of flying birds, are 

simultaneously used to find the best fitness in the search space. At each iteration, 

every particle keeps track of its personal best position by dynamically adjusting its 

flying velocity. The new velocity is evaluated by its current velocity and the distances 

of its current position with respect to its previous best local position and the global 

best position. After a sufficient number of iterations, the particles will eventually 

cluster around the neighborhood of the fittest solution. 

 

 Let the i-th particle be represented as ],,,[ 21 iRii www L=iw . The best previous 

position, i.e. the position giving the best fitness value, of particle i is recorded and 
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represented as ],,,[ 21 iRii ppp L=ip . Assume there are a total of t particles in the 

PSO. Let  ],,,[ 21
g
R

gg ppp L=gp denote by the best particle that gives the current 

optimal fitness value among all the particles in the population. The rate of the position 

change, i.e. the velocity, for particle i is represented by ],,,[ 21 iRii vvv L=iv . Each 

particle moves over the search space with a velocity dynamically adjusted according 

to its historical behavior and its companions. The velocity and position of a particle 

are updated according to the following equations [36, 42]: 

 

)(                

)(

22

11

ji
g
j

jijiji
new
ji

wpRNDc

wpRNDcvv

−⋅⋅+

−⋅⋅+=
                       (12a) 

new
jiji

new
ji vww += , for Rjti ,,2,1 and ,,2,1 LL ==          (12b) 

 

where   1RND and   2RND are two random numbers in the range between 0 and 1; 

  1c and   2c are two positive constants. 

 

 The second term in the right-hand side of the velocity equation in eq. (12a) is 

interpreted as the “cognition” part, which represents the private thinking of the 

particle itself. The third term in eq. (12a) is the “social” part, which represents the 

collaboration among the particles [41, 42]. The two positive constants   1c and   2c are 

the weights used to regulate the acceleration of self-cognition (a local best) and social 

interaction (a global best). Kennedy and Eberhart [36], and Shi and Eberhart [41] 

suggested  2 21 == cc since they are on average make the weights for “cognition” and 

“social” parts to be 1. They are also the values adopted in this study. The velocity 

equation in eq. (12a) calculates the particle’s new velocity in each dimension 

according to its previous velocity and the distances of its current position from its own 
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best experience (i.e. position) and the group’s best experience. Then the particle 

moves toward a new position according to the position update equation in eq. (12b). 

The performance of each particle is measured by the fitness value, i.e. the objective 

function value. Since the proposed ICA model involves a constraint, only the 

positions in the feasible space are recorded when calculating the local best   ip and the 

global best   gp in the PSO search procedure. 

 

 We can now formally present the PSO search procedure for the constrained ICA 

model. The following symbols are the notation used in the algorithm. 

 

Notation: 

   =t the number of particles in the swarm 

  =X the training data matrix 

   ],,,[ 1 C2 xxx L= , where C is the number of training image patches 

 T
iRii xxx ],,,[ 21 L=ix  

     = the i-th column vector of X, which is re-shaped from an image patch of size 

        nm× , and therefore nmR ⋅= , for Ci ,,2,1 L=  

 ],,,[ 21 iRiii www L=w  

     = the position of particle i, for ti ,,2,1 L= , 

    which is the de-mixing row vector, i.e. the decision vector to be estimated. 

    Note that we only need one source component in this study and, therefore, 

    we need to estimate only one de-mixing row vector for each particle. 

  Fitness(y) = the fitness value of y 

 

The procedure: 
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Step 1. Center and whiten the data matrix X. 

Step 2. Initialize: 

   Randomly generate the initial position and velocity of each particle i 

                     ],,,[ 21 iRiii www L=w  

                 and 

                     ],,,[ 21 iRiii vvv L=v ,  for ti ,,2,1 L= . 

       

      In order to prevent overshoot of the target position, small initial values of ijw

   and ijv  are selected in the ranges of 5.0− < ijw < 0.5 and 0  < ijv  < 0.1. 

   Compute the fitness value of each particle:  

2

1

2 )]2 ([1 )(
⎭
⎬
⎫

⎩
⎨
⎧

−−= ∑
=

C

j
jii yexp

C
Fitness y  

 
   where  ],,[ 21 iCiiii yyy L== Xwy , for ti ,,2,1 L= . 

   Determine the local best position of particle i and the global best position: 

 
 ,],,,[ 21 iwp == iRiii ppp L for ti ,,2,1 L=  

)}({ ],,,[ 21 Xpp i ⋅== Fitnessmax argppp
i

g
R

ggg L  

 
Step 3. Update the velocity and position of each particle i, for ti ,,2,1 L= : 

 

)()( 2211 ji
g
jjijiji

new
ji wpRNDcwpRNDcvv −⋅⋅+−⋅⋅+=  

new
jiji

new
ji vww += ,  for Rj ,,2,1 L=  

 

   Let ],,,[ 21
new
iR

new
i

new
i

new www L=iw . 

   Swap the new and old velocities and positions by setting 
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                     new
jiji

new
jiji wwvv ==  and   

Step 4. Normalize new
iw : 

                      |||| new
i

new
i

new
i www ← ,  for ti ,,2,1 L= . 

Step 5. Evaluate the new fitness values, and update local best positions   ip and the 

   global best position gp : 

   If )()( XpXw ⋅>⋅ i
new
i FitnessFitness , then let new

ii wp = , 

else retain the current value of , ip  for ti ,,2,1 L= . 

   Let )}({  Xpp i ⋅= Fitnessmax arg
i

g . 

Step 6. Compute the estimated source y based on the global best position gp : 

                     ],,,[ 21 C
g yyy L=⋅= Xpy  

 

Step 7. Evaluate the feasibility of y: 

   If  }{ yyjj
Kymax σμ +< and yyjj

Kymin σμ −>}{ ,  

   then store the current best feasible solution with gpw ←∗ . 

   Otherwise, skip to Step 8. 

       yμ and   yσ are the mean and standard deviation of   iy in y, and K is a 

predetermined control constant. 

Step. 8. Check for the stopping criterion: 

  If the maximum number of search iterations is reached, then go to Step 9. 

  Otherwise, repeat Steps 3 through 8 until the stopping criterion is met. 

Step 9. Deliver the solution: 

  ],,,[ 21
∗∗∗∗ = Rwww Lw is the best solution obtained, and is used as the 

convolution filter for defect detection in this study. If   ∗w is null, no feasible 



20 

solution can be delivered in the PSO search process. The number of search 

iterations, and/or control constant K may have to increase to find a feasible 

solution of the constrained ICA model. 

 

PSO is an extremely simple and easily implemented algorithm that can 

dynamically adjust the current local and global positions with a large number of 

particles in the swarm to simultaneously find the solution from different positions in 

the search space. It is well suited for the constrained ICA model that involves 

typically hundreds of decision variables, even with a small image patch of 

size 2020 × . 

 

 The resulting de-mixing row vector   ],,,[ 21
∗∗∗∗ = Rwww Lw must be converted 

back to a 2D filter  ),( jih so that the 2D convolution operation of eq. (1) can be 

followed in the inspection process for a 2D inspection image. For a convolution filter 

of size nm× , the conversion is given by  

 
∗

+−=−− jniwjih  )1()1,1(  

 
for  ,,2,1 mi L= and nj ,,2,1 L= . 

 

3. Experimental results 

 

 This section presents the experimental results from a number of low-contrast 

surface images found in backlight panels and LCD glass substrates to evaluate the 

performance of the proposed ICA-based filter design scheme. The test images in the 

experiments are  020020 × pixels wide with 8-bit gray levels. In the PSO search 
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algorithm, the required parameters are set up as follows: the population size (the 

number of particles) t = 10, the weights 2 21 == cc , and the maximum number of 

iterations (stopping criterion) is 200. Image patches used in training are of 

size 2020 × , and the total number of image patches to form a data matrix is 100, 

unless otherwise specified. The training image patches were randomly selected from a 

faultless surface image. In the inspection process, pixels with impulse responses 

falling within and outside the control limits are respectively represented by white and 

black intensities so that the detected defects can be visibly observed and verified in 

the binarized image. 

 Figure 2(a) shows a defective backlight panel image, and Figure 2(b) is the 

enhanced version of the image. It is used to demonstrate the effect of varying values 

of control constant K on detection results. The faultless backlight panel image shown 

in Figure 1(a) was used as the training image, from which the training image patches 

were extracted. Figure 3 depicts the plot of the fitness value as a function of iteration 

number. It can be observed from the figure that the PSO search process converges fast 

after 150 iterations, and it is the case for all test samples evaluated in this study. 

Therefore, 200 iterations are considered to be sufficient for our problem. 

 

 Table 1 summarizes the resulting standard deviation   yσ of the 100 training 

image patches extracted from Figure 1(a1) and the corresponding maximum fitness 

value for each individual control constant value of K. As expected, the standard 

deviation   yσ decreases when the value of the control constant K used to set up the 

constraint in training is decreased. The uncontrained ICA model (i.e. K = ∞ ) 

generates the largest variation of source values y, and the largest fitness value. Figures 

2(c)-(f) illustrate the detection results of the defective surface image in Figure 2(a) 
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from control constant K = 2.5, 3.0, 3.5 and ∞ , respectively. It can be observed from 

Figure 2(f) that the convolution filter generated from the unconstrained ICA model 

results in much noise. (Note that the detection results of Figure 2(f) is based on the 

segmentation of the control limits with K = 3 in the inspection process. The use of K = 

3 is to follow the typical 3-sigma standard deviation used in statistical control limits.) 

A control constant K = 2.5 or 3.0 generates similar and satisfactory results for the 

constrained ICA model. It has been found that the PSO search process cannot find a 

feasible solution for the constrained ICA model with a control constant K less than 2, 

even the number of particles and the maximum number of search iterations are 

respectively increased up to 50 and 5000. 

 

 In practical implementation, K = 2.5 or 3 can be used to set up the constraint. The 

tighter control constant K = 2.5 generally gives more noisy points but preserves a 

better shape and area of a detected defect in an inspection image. This is because a 

smaller control constant value results in tighter control limits to segment local 

anomalies from the uniform background in the inspection process. The tiny noisy 

points can be easily removed using a post-processing technique such as the 

morphological operations. Throughout the subsequent experiments, a control constant 

K = 3 is used to set up the constraint in the training process, and control limits 

(thresholds) in the inspection process. 

 

3.1 Detection in low-contrast surface images 

 Figure 4(a1) shows a faultless backlight panel image. Figures 4(a2)-(a5) illustrate 

four defective surface images of backlight panels, in which the subtle defects 

embedded in the low-contrast surfaces are hardly visible. Figures 4(b1)-(b5) are the 

respective enhanced images of Figures 4(a1)-(a5) to visualize the locations and shapes 
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of defects. Note that the geometric structure and uneven illumination of backlight 

panel surfaces are also highlighted in the enhanced images. Under the control constant 

K = 3, the detection results from the convolution filter are demonstrated as binary 

images and shown in Figures 4(c1)-(c5). In the defective images of Figures 4(a2)-(a5), 

all hardly-visible defects are well detected. For the faultless surface image of Figure 

4(a1), the resulting binary image is uniformly white and no defect is claimed. In order 

to demonstrate the detected shape and location of a defect in the binary image, a 

morphological closing is first carried out on the binary image, and then the boundary 

of the detected defect in the post-processing image is superimposed on the enhanced 

image. Figures 5(a)-(d) present the superimposed results for the four defective images 

in Figures 4(a2)-(a5), respectively. They show that the shape and location of each 

subtle defect in a low-contrast surface image can be reliably identified. 

 

 Figure 6 demonstrates further the detection results of LCD glass substrate images. 

Figure 6(a1) is a clear glass substrate image, and Figures 6(a2)-(a5) are four defective 

glass substrate images. It can be seen from the enhanced images in Figures 6(b1)-(b5) 

that LCD glass substrates contain a horizontal structural pattern with uneven lighting 

on the surfaces. Figures 6(c1)-(c5) show the detection results as binary images using 

the trained convolution filter and the control constant with K = 3. The detection results 

also reveal that all local defects embedded in low-contrast surface images can be 

effectively detected, and the resulting binary image of a clear surface image is 

approximately a uniform white image. In the following two subsections, we 

individually discuss the effects of changes in window size of a filter and number of 

training image patches on the detection results. 

 

3.2 Effect of changes in window size 
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 In the present study, the size of the neighborhood window is set at 2020 ×  

pixels. The choice of a proper window size must be large enough to contain the image 

content in the surrounding region of each pixel. Too small a window size causes 

insufficient representation of common characteristics of a surface image and may 

generate much noise in the filtered image. However, too large a window size may 

over-smooth subtle defects and requires more computation time in the inspection 

process.  In order to evaluate the effect of varying window sizes on the convoluted 

responses, the two defective backlight panel images shown in Figures 4(a3) and (a4) 

are used as the test samples. In the experiment, the window size of an image patch 

was varied from 1010 × , 1551 × ,  2020 × and  2525 × pixels. All parameter values of 

the PSO search procedure were the same as those described previously to find the best 

convolution filter for each of the four window sizes. 

 

 Figures 7(a1)-(a4) and 7(b1)-(b4) show, respectively, the detection results of the 

two defective surface images in Figures 4(a3) and (a4) from the four window sizes. 

The detection results of both test images consistently reveal that the small window 

size  1010 × cannot reliably detect the defects and generates much random noise. The 

large window size  2525 × over-smoothes the small defects, and makes the detected 

defect pixels become scattered. Window sizes  1551 × and  2020 × generate similar 

detection results, and the defects in both test images are well segmented. They are 

recommended for the application of defect detection in low-contrast uniform surface 

images. 

 

3.3 Effect of the number of training image patches 

 In the previous experiments, we used 100 image patches randomly selected from 

a faultless surface image to construct the column vectors of the data matrix in the 
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training process. In this subsection, we evaluate further the effect of changes in the 

number of training image patches. Again, the two defective backlight panel images 

shown in Figures 4(a3) and (a4), and the additional faultless surface image in Figure 

4(a1) are used as the test samples. 

 

 The number of training image patches of size  2020 × was varied from 50, 100 to 

150. All parameter values used in the PSO search procedure were the same for these 

three different sizes of data matrices. The detection results shown as binary images are 

presented in Figure 8. It is apparent from Figures 8(a1), (b1) and (c1) that the small 

number of 50 image patches does not provide a sufficient data matrix for training. 

Although the subtle defects can be still detected, they appear in a much scattering 

manner and much noise is generated in the filtered images. The numbers of 100 and 

150 training image patches generate similar detection results, as seen in Figures 

8(a2)-(a3), (b2)-(b3) and (c2)-(c3). In considering the required computation time in 

the training process, 100 training image patches are sufficient to construct the data 

matrix for the design of a convolution filter in defect detection applications. 

 

 Before the end of the Experiment section, the proposed method is also applied to 

the enhanced version of the low-contrast images in Figures 4 and 6, in which the 

defects along with the structured texture and uneven brightness are much clear. 

Figures 9(a1)-(a5) and (b1)-(b5) show, respectively, the detection results of the 

proposed method with control constant K = 2.5 for the enhanced images in Figures 

4(b1)-(b5) and 6(b1)-(b5). The experimental results reveal that all defects in the test 

images can also be detected, but much noise is generated in the filtered images and 

the detected defect sizes are scattered. This is because the training images contain 

complicated textures in the unevenly illuminated background. The randomly selected 
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image patches used in training are beyond a simple translated version to each other, i.e. 

they may involve more than one latent source. A few independent components (i.e. a 

filter bank) may have to be estimated from the constrained ICA model for better 

detection results of the enhanced images. 

 

 A comparative experiment between the proposed method and the well-known 

Wiener filter [43, 44] is further given in Figures 10 and 11 based on the test samples 

in Figures 4(a1)-(a5) and 6(a1)-(a5). Figures 10(a1)-(a5) show the resulting images of 

Wiener filtering for the original images of the LCD backlight panels in Figures 

4(a1)-(a5), respectively. To follow the same control limits of the proposed method, the 

control constant of  K = 3 is also used for the Wiener-filtered images, and the 

binarized images are presented in Figures 10(b1)-(b5). Figures 11(a1)-(a5) and 

(b1)-(b5) present the resulting images of Wiener filtering and their binarization for the 

original images of the LCD glass substrates in Figures 6(a1)-(a5). The experimental 

results indicate that the Wiener filtering method can well detect better-contrasted 

anomalies, while it cannot effectively segment the subtle defects such as those shown 

in Figures 4(a2) and 6(a3).   

 

4. Conclusions 

 

 Detecting small defects which appear as local anomalies embedded in a 

homogeneous surface is a common problem in automated surface inspection in 

industry. The defects under inspection are generally small in size and show no distinct 

intensity variations from their surrounding regions. Therefore, simple thresholding 

and gradient-based methods cannot be reliably applied to identify such defects in 

low-contrast surface images. In this study, we have presented a filtering approach for 
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defect detection in low-contrast surface images. The characteristic of each pixel in the 

inspection image is measured by the impulse response which is obtained by the 

convolution of the image with a specifically designed filter. 

 

 A constrained ICA model has been proposed for the design of the convolution 

filter. The objective of the ICA model is based on the maximization of negentropy 

with the constraint that all resulting source values from the training image patches are 

within statistical control limits. The ICA objective makes the convolution filter have 

the most representative source intensity of a training surface image, while the 

constraint in the ICA model confines the variation of source values from all training 

image patches within a satisfactory level. The merit of the constraint in the ICA model 

is that the same control constant K selected in the training process is also used to set 

up the control limits for segmenting local anomalies from the uniform background in 

the inspection process. This eliminates the tiresome and unreliable try-and-error 

approach to determine the threshold values for segmentation. 

 

 Since the images of the object surfaces studied in this paper can be considered as 

having a uniform intensity, all image patches anywhere in a defect-free surface are 

considered to be identical. The training image patches entered as column vectors in 

the data matrix are then the translated versions of the same source signal. Therefore, it 

is enough to estimate just one source component and its corresponding de-mixing row 

vector. The resulting de-mixing vector that satisfies the constraint in the ICA model is 

used as the convolution filter. PSO that uses a group of particles to simultaneously and 

dynamically search for local best positions and the global position is applied to solve 

for the constrained ICA model. Experimental results showed that the PSO search 

procedure can effectively find a feasible solution involving hundreds of continuous 
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decision variables in a moderate number of iterations. 

 

 The convolution filter derived from the constrained ICA model will give an 

impulse response within the control limits when the filter spans a faultless region in 

the inspection image, and will generate a distinct impulse response outside the control 

limits for a defective region. Experimental results from the backlight panels and LCD 

glass substrates have shown that the proposed ICA-based filtering scheme can 

effectively detect various small defects in low-contrast surface images. It is concluded 

from the experiments that the following parameter setup can generate good detection 

results for defect inspection in uniform surface images. For the PSO search algorithm, 

population size t = 10, positive weights 2 21 == cc , and number of iterations = 200. 

For the constrained ICA model, number of training image patches = 100, image patch 

size = 2020 × , and control constant K = 2.5 or 3. 

 

 Although the proposed method currently aims at defect detection in uniform 

surface images, it is believed that it can be easily extended to the inspection of defects 

in homogeneous texture images. A homogeneous texture will show self-similarity 

property in the image, which means all sufficiently large image patches are similar to 

each other, regardless of their positions in the textured image. If all training image 

patches in a faultless textured image can be considered as the translated versions of 

the original texture pattern, the proposed constrained ICA model can then be used to 

design a single convolution filter for distinguishing local anomalies from the 

homogeneous texture background. 
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(a1) (b1) 

  
(a2) (b2) 

  
(a3) (b3) 

     
Figure 1. Low-contrast sample images of LCD backlight panels: (a1) faultless surface 

image; (b1) defective surface image; (a2), (b2) respective enhanced images; 
(a3), (b3) respective gradient images. 
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(a) (b) 

  
(c) K = 2.5 (d) K = 3 

  
(e) K = 3.5 (f) Unconstrained 

 
Figure 2. Effect of varying control constant K in training: (a) original image of a 

defective backlight panel; (b) enhanced image of (a) to show the defect in 
the surface; (c)-(f) detection results as binary images from the control 
constant K = 2.5, 3, 3.5 and infinite, respectively. 
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Figure 3. Plot of the fitness value with respect to the number of iterations, which 

shows the convergence of the PSO search procedure for the backlight panel 
image in the constrained ICA model. 
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(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

   
(a4) (b4) (c4) 

   
(a5) (b5) (c5) 

Figure 4. Detection results of LCD backlight panels: (a1)-(a5) a clear and four 
defective surface images; (b1)-(b5) respective enhanced images of 
(a1)-(a5); (c1)-(c5) respective resulting binary images for defect 
segmentation. 
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Figure 5. (a)-(d) Superimposing boundaries of detected defect areas on the enhanced 

images for the defective backlight panel surfaces in Figures 4(a2)-(a5), 
respectively. 
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(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

   
(a4) (b4) (c4) 

   
(a5) (b5) (c5) 

Figure 6. Detection results of LCD glass substrates: (a1)-(a5) a clear and four 
defective surface images; (b1)-(b5) respective enhanced images; (c1)-(c5) 
respective resulting binary images for defect segmentation. 
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(a1) 1010×  (b1) 1010×  

  
(a2) 1515×  (b2) 1515×  

  
(a3) 2020×  (b3) 2020×  

  
(a4) 2525×  (b4) 2525×  

 
Figure 7. Effect of changes in window size: (a1)-(a4) detection results from window 

sizes 1010 × , 5151 × ,  0202 × and  5252 × for the defective backlight panel 
image in Figure 4(a3); (b1)-(b4) detection results from the respective 
window sizes for the defective panel image in Figure 4(a4). 
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(a1) 50=C  (b1) 50=C  (c1) 50=C  

   
(a2) 100=C  (b2) 100=C  (c2) 100=C  

   
(a3) 150=C  (b3) 150=C  (c3) 150=C  

 
Figure 8. Effect of changes in the number of training image patches C: (a1)-(a3) 

detection results from 50 =C , 100 and 150 for the defective backlight 
panel image in Figure 4(a3); (b1)-(b3) detection results from 50 =C , 100 
and 150 for the defective image in Figure 4(a4); (c1)-(c3) detection results 
from 50 =C , 100 and 150 for the faultless image in Figure 4(a1). 
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(a2) (b2) 

  
(a3) (b3) 

  
(a4) (b4) 

  
(a5)  (b5)  

 
Figure 9. (a1)-(a5) Respective detection results of the enhanced images in Figure 

4(b1)-(b5); (b1)-(b5) respective detection results of the enhanced images in 
Figure 6(b1)-(b5). (The control constant is at 2.5 =K .) 
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(a5)  (b5)  

 
Figure 10. (a1)-(a5) Respective Wiener-filtered images of the LCD backlight panels in 

Figures 4(a1)-(a5); (b1)-(b5) respective binarized images of (a1)-(a5) from 
the 3-sigma control limits. 
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(a4)  (b4)  

  
(a5)  (b5)  

 
Figure 11. (a1)-(a5) Respective Wiener-filtered images of the LCD glass substrates in 

Figures 6(a1)-(a5); (b1)-(b5) respective binarized images of (a1)-(a5) from 
the 3-sigma control limits. 


